【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B40),C

0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動(dòng)點(diǎn).

1 求這個(gè)二次函數(shù)的解析式;

2 是否存在點(diǎn) P,使POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 SDBCSABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)拋物線解析式為y=x2﹣3x﹣4;(2)存在滿足條件的P點(diǎn),其坐標(biāo)為(,﹣2);(3)存在滿足條件的D點(diǎn),其坐標(biāo)為(5,6).

【解析】

(1)由A、B、C三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

(2)由題意可知點(diǎn)P在線段OC的垂直平分線上,則可求得P點(diǎn)縱坐標(biāo),代入拋物線解析式可求得P點(diǎn)坐標(biāo);

(3)存在.分兩種情況討論,再利用待定系數(shù)法以及解方程組即可解決問(wèn)題.

(1)設(shè)拋物線解析式為y=ax2+bx+c,

A、B、C三點(diǎn)坐標(biāo)代入可得,解得

∴拋物線解析式為y=x2﹣3x﹣4;

(2)如圖1,作OC的垂直平分線DP,交OC于點(diǎn)D,交BC下方拋物線于點(diǎn)P,

PO=PC,此時(shí)P點(diǎn)即為滿足條件的點(diǎn),

C(0,﹣4),

D(0,﹣2),

P點(diǎn)縱坐標(biāo)為﹣2,

代入拋物線解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=

∴存在滿足條件的P點(diǎn),其坐標(biāo)為(,﹣2);

(3)如圖2,

①當(dāng)D點(diǎn)在直線BC的上方時(shí),過(guò)A點(diǎn)作AD1BC,交拋物線于D1,此時(shí),使得SDBC=SABC,

B(4,0),C(0,﹣4),

∴直線BC的解析式為y=x﹣4,

AD1BC,

∴設(shè)直線AD11的解析式為y=x+n,

A(﹣1,0)代入得,0=﹣1+n,則n=1,

∴直線AD1的解析式為y=x+1,

,

D1的坐標(biāo)為(5,6),

②當(dāng)D點(diǎn)在直線BC的下方時(shí),

由直線AD1的解析式為y=x+1可知直線AD1y軸的交點(diǎn)E的坐標(biāo)為(0, 1),

CE=5,

∴直線AD的解析式為y=x﹣10,

∵方程x2﹣3x﹣4=x﹣10無(wú)實(shí)數(shù)根,

故存在滿足條件的D點(diǎn),其坐標(biāo)為(5,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寒假麗麗用一塊邊長(zhǎng)為10的正方形彩紙為她的人偶玩具做了一件披風(fēng),如圖所示,先將正方形紙片對(duì)折,展平后得到中線,再分別沿折痕,將點(diǎn),點(diǎn)都折到上點(diǎn)處,此時(shí)領(lǐng)口的長(zhǎng)為(

A.B.C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構(gòu)成四邊形ABCD

1)求證:四邊形ABCD是菱形;

2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車自駕出游。

[來(lái)

根據(jù)以上信息,解答下列問(wèn)題:

(1)設(shè)租車時(shí)間為小時(shí),租用甲公司的車所需費(fèi)用為元,租用乙公司的車所需費(fèi)用為元,分別求出,關(guān)于的函數(shù)表達(dá)式;

(2)請(qǐng)你幫助小明計(jì)算并選擇哪個(gè)出游方案合算。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)B點(diǎn),且頂點(diǎn)在直線y=上.

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由.

(3)(2)的條件下,若M點(diǎn)是CD所在直線下方該拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)MMN平行于y軸交CD于點(diǎn)N.設(shè)點(diǎn)M的橫坐標(biāo)為t,MN的長(zhǎng)度為s,求st之間的函數(shù)關(guān)系式,寫出自變量t的取值范圍,并求s取大值時(shí),點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A1,1),在x軸上確定點(diǎn)P,使AOP為等腰三角形,則符合條件的點(diǎn)P的個(gè)數(shù)共有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=ax2+2ax+c與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)當(dāng)a>0時(shí),如圖所示,若點(diǎn)D是第三象限方拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫出自變量m的取值范圍;請(qǐng)問(wèn)當(dāng)m為何值時(shí),S有最大值?最大值是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過(guò)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A.

(1)求二次函數(shù)的表達(dá)式;

(2)如圖1,點(diǎn)D是拋物線第四象限上的一動(dòng)點(diǎn),連接DC,DB,當(dāng)SDCB=SABC時(shí),求點(diǎn)D坐標(biāo);

(3)如圖2,在(2)的條件下,點(diǎn)QCA的延長(zhǎng)線上,連接DQ,AD,過(guò)點(diǎn)QQPy軸,交拋物線于P,若∠AQD=ACO+ADC,請(qǐng)求出PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,A=90°,OBC邊上一點(diǎn),以O為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tanBOD=

1)求O的半徑OD;

2)求證:AEO的切線;

3)求圖中兩部分陰影面積的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案