【題目】在△ABC中,DE垂直平分AB ,分別交AB、BC于點D 、E,MN垂直平分AC,分別交AC、BC于點M、N,連接AE,AN.
(1)如圖1,若∠BAC= 100°,求∠EAN的度數;
(2)如圖2,若∠BAC=70°,求∠EAN的度數;
(3)若∠BAC=a(a≠90°),請直接寫出∠EAN的度數. (用含a的代數式表示)
【答案】(1)∠EAN=20°;(2)∠EAN=40°;(3)當0<a<90°時,∠EAN=180°-2a;當180°>a>90°時,∠EAN=2a -180°.
【解析】
(1)根據線段垂直平分線上的點到線段兩端點的距離相等可得AE=BE,再根據等邊對等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的內角和定理求出∠B+∠C,再根據∠EAN=∠BAC-(∠BAE+∠CAN)代入數據進行計算即可得解;
(2)同(1)的思路,最后根據∠EAN=∠BAE+∠CAN-∠BAC代入數據進行計算即可得解;
(3)根據前兩問的求解,分α<90°與α>90°兩種情況解答.
(1)因為DE垂直平分AB,
所以AE=BE,∠BAE=∠B,
同理可得∠CAN= ∠C,
所以∠EAN=∠BAC -∠BAE-∠CAN=∠BAC -(∠B+∠C),
在△ABC中,∠B+∠C=180°- ∠BAC=80°,
所以∠EAN= 100-80=20°;
(2)因為 DE垂直平分AB,
所以AE= BE,∠BAE=∠B,
同理可得∠CAN= ∠C,
所以∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,
在△ABC中,∠B+∠C= 180°-∠BAC= 110°,
所以∠EAN=110°- 70°=40°;
(3)當0<a<90°時,∠EAN=180°-2a;
當180°>a>90°時,∠EAN=2a -180°.
科目:初中數學 來源: 題型:
【題目】把拋物線y=﹣ 經( )平移得到y=﹣ ﹣1.
A.向右平移2個單位,向上平移1個單位
B.向右平移2個單位,向下平移1個單位
C.向左平移2個單位,向上平移1個單位
D.向左平移2個單位,向下平移1個單位
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖中,每個正方形由邊長為1的小正方形組成:
(1)觀察圖形,請?zhí)顚懴铝斜砀瘢?/span>
正方形邊長 | 1 | 3 | 5 | 7 | … | n(奇數) |
黑色小正方形個數 |
正方形邊長 | 2 | 4 | 6 | 8 | … | n(偶數) |
黑色小正方形個數 |
(2)在邊長為n(n≥1)的正方形中,設黑色小正方形的個數為P1 , 白色小正方形的個數為P2 , 問是否存在偶數n,使P2=5P1?若存在,請寫出n的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=36°.BD是∠ABC的平分線,交AC于點D,E是AB的中點,連接ED并延長,交BC的延長線于點F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學組織學生去福利院獻愛心,在準備禮品時發(fā)現,購買1個甲禮品比購買1個乙禮品多花40元,并且花費600元購買甲禮品和花費360元購買乙禮品的數量相等.
(1)向甲、乙兩種禮品的單價各為多少元?
(2)學校準備購買甲、乙兩種禮品共30個送給福利院的老人,要求購買禮品的總費用不超過2400元,那么最多可購買多少個甲禮品?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面的證明:如圖,點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,連接DE,DF,DE∥AB,∠BFD=∠CED,連接BE交DF于點G,求證:∠EGF+∠AEG=180°.
證明:∵DE∥AB(已知),
∴∠A=∠CED( )
又∵∠BFD=∠CED(已知),
∴∠A=∠BFD( )
∴DF∥AE( )
∴∠EGF+∠AEG=180°( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E在線段CD上,AE,BE分別平分∠DAB和∠CBA,∠AEB=90°,設AD=x,BC=y,且(x-3)2+|y-4|=0.
(1)求AD和BC的長;
(2)你認為AD和BC有怎樣的位置關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BE是它的角平分線,∠C=90°,D在AB邊上,以DB為直徑的半圓O經過點E,交BC于點F.
(1)求證:AC是⊙O的切線;
(2)已知sinA= ,⊙O的半徑為4,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com