【題目】在平面直角坐標(biāo)系中,點P的坐標(biāo)為(ab),點P的“變換點”P`的坐標(biāo)定義如下:當(dāng)時,P`點坐標(biāo)為(a,-b);當(dāng)時,P`點坐標(biāo)為(b,-a)。線段l上所有點按上述“變換點”組成一個新的圖形,若直線與組成的新的圖形有兩個交點,則k的取值范圍是(

A. B. C. D.

【答案】A

【解析】

根據(jù)題意畫出圖形,確定變換分界點,根據(jù)條件,從直線y=kx+4的變動范圍確定k的取值范圍.

a≥b,x≥,解得x≥2,

所以,線段變換的分界點是(2,2)

當(dāng)a≥b,變換得到新圖形是線段DE;當(dāng)a<b時,變換得到新圖形是線段DC.

D(2,-2),C(4,2),E(8,2).

直線y=kx+4y軸相交于(0,4),如圖,假如直線與新圖形有兩個交點,那么2<x<4,-2<y<2.

因為

所以,由上述可得

,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】基本模型:如圖1,點A,F(xiàn),B在同一直線上,若∠A=∠B=∠EFC=90°,易得△AFE~△BCF.

(1)模型拓展:如圖2,點A,F(xiàn),B在同一直線上,若∠A=∠B=∠EFC,求證:△AFE~△BCF;
(2)拓展應(yīng)用:如圖3,AB是半圓⊙O的直徑,弦長AC=BC=4 ,E,F(xiàn)分別是AC,AB上的一點,若∠CFE=45°,若設(shè)AE=y,BF=x,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線y=2x+m與y軸交于點A,與直線y=-x+5交于點B(4,n),P為直線y=-x+5上一點.

(1)求m,n的值;

(2)求線段AP的最小值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點,矩OABC的位置如圖所示,點A,C的坐標(biāo)分別為(10,0),(0,8),點P是y軸上的一個動點,將△OAP沿AP翻折得到:△O′AP,直線BC與直線O′P交于點E,與直線O′A交于點F.

(1)當(dāng)O′落在直線BC上時,求折痕AP的長.
(2)當(dāng)點P在y軸正半軸上時,若△PCE與△POA相似,求直線AP的解析式;
(3)在點P的運動過程中,是否存在某一時刻,使得 ?若存在,求點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是(
A.當(dāng)a=1時,函數(shù)圖象過點(﹣1,1)
B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測驗成績?nèi)缦卤硭荆?/span>

測驗類別

平時測驗

期中測驗

期末測驗

1

2

3

成績

100

106

106

105

110

(1)該同學(xué)上學(xué)期5次測驗成績的眾數(shù)為 ,中位數(shù)為 ;

(2)該同學(xué)上學(xué)期數(shù)學(xué)平時成績的平均數(shù)為

(3)該同學(xué)上學(xué)期的總成績是將平時測驗的平均成績、期中測驗成績、期末測驗成績按照2:3:5的比例計算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評成績(結(jié)果保留整數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受國內(nèi)外復(fù)雜多變的經(jīng)濟環(huán)境影響,去年1至7月,原材料價格一路攀升,義烏市某服裝廠每件衣服原材料的成本y1(元)與月份x(1≤x≤7,且x為整數(shù))之間的函數(shù)關(guān)系如下表:

月份x

1

2

3

4

5

6

7

成本(元/件)

56

58

60

62

64

66

68

8至12月,隨著經(jīng)濟環(huán)境的好轉(zhuǎn),原材料價格的漲勢趨緩,每件原材料成本y2(元)與月份x的函數(shù)關(guān)系式為y2=x+62(8≤x≤12,且x為整數(shù)).
(1)請觀察表格中的數(shù)據(jù),用學(xué)過的函數(shù)相關(guān)知識求y1與x的函數(shù)關(guān)系式.
(2)若去年該衣服每件的出廠價為100元,生產(chǎn)每件衣服的其他成本為8元,該衣服在1至7月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤7,且x為整數(shù)); 8至12月的銷售量p2(萬件)與月份x滿足關(guān)系式p2=﹣0.1x+3(8≤x≤12,且x為整數(shù)),該廠去年哪個月利潤最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC的三個頂點的坐標(biāo)分別為A﹣23),B﹣6,0),C﹣10).

1)請直接寫出點B關(guān)于點A對稱的點的坐標(biāo);

2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo);

3)請直接寫出:以AB、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公路上一路段的道路維修工程準(zhǔn)備對外招標(biāo),現(xiàn)有甲、乙兩個工程隊競標(biāo),競標(biāo)資料上顯示:甲工程隊單獨完成此項工程需要10天,乙工程隊單獨完成此項工程需要15天,但甲工程隊每天的工程費用比乙工程隊多300元;甲、乙兩隊合作共需要10200元.工程指揮隊決定從甲、乙兩個工程隊中選一隊單獨完成,若從節(jié)省資金的角度考慮,應(yīng)選哪個工程隊?

查看答案和解析>>

同步練習(xí)冊答案