【題目】在平面直角坐標(biāo)系xOy中,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y的圖象上,連接OA、OB,若OAOBOBOA,則k_____

【答案】-2

【解析】

過(guò)點(diǎn)AADx軸于點(diǎn)D,過(guò)點(diǎn)BBCx軸于點(diǎn)C,點(diǎn)A的坐標(biāo)為(a),證明△OCB≌△ADO,便可用a表示點(diǎn)B的坐標(biāo),再把B點(diǎn)坐標(biāo)代入反比例函數(shù)y中求得k

解:過(guò)點(diǎn)AADx軸于點(diǎn)D,過(guò)點(diǎn)BBCx軸于點(diǎn)C,

則有∠ADO=∠OCB90°.

設(shè)點(diǎn)A的坐標(biāo)為(a,),

ODaAD

OAOB,

∴∠AOB90°,

∴∠DOA90°﹣∠COB=∠CBO

在△OCB和△ADO中,OCB=ADOCBO=DOA,OB=AO,

∴△OCB≌△ADOAAS),

BCODa,OCAD

B(﹣),

k=

故答案為﹣2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年,一場(chǎng)突然而來(lái)的新型冠狀病毒肺炎疫情阻擋了學(xué)生們開(kāi)學(xué)的腳步,多地學(xué)校進(jìn)行了“戰(zhàn)役在家,線上課堂”活動(dòng),保證學(xué)生離校不離學(xué),為減少初中生被網(wǎng)絡(luò)詐騙的案件,因此要求學(xué)生掌握防詐騙知識(shí)并進(jìn)行網(wǎng)絡(luò)測(cè)評(píng).為了解某校學(xué)生的測(cè)試情況,從中隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并把測(cè)試成績(jī)分為ABCD四個(gè)等次,繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問(wèn)題:

1a= b= ,c= ;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并計(jì)算表示C等次的扇形所對(duì)的圓心角的度數(shù);

3)學(xué)校決定從A等次的甲、乙、丙、丁四名學(xué)生中,隨機(jī)選取兩名學(xué)生參加全市中學(xué)生防網(wǎng)絡(luò)詐騙知識(shí)競(jìng)賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求甲、乙兩名學(xué)生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC⊥AB,OAC的中點(diǎn),經(jīng)過(guò)點(diǎn)O的直線交ADE,交BCF,連結(jié)AF、CE,現(xiàn)在添加一個(gè)適當(dāng)?shù)臈l件,使四邊形AFCE是菱形,下列條件:①OE=OA;②EF⊥AC;③AF平分∠BAC;④EAD中點(diǎn).正確的有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得A,C之間的距離為12cm,點(diǎn)BD之間的距離為16m,則線段AB的長(zhǎng)為  

A. B. 10cmC. 20cmD. 12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:在中,邊上的動(dòng)點(diǎn)運(yùn)動(dòng)(與,不重合),點(diǎn)與點(diǎn)同時(shí)出發(fā),由點(diǎn)沿的延長(zhǎng)線方向運(yùn)動(dòng)(不與重合),連結(jié)于點(diǎn),點(diǎn)是線段上一點(diǎn).

1)初步嘗試:如圖,若是等邊三角形,,且點(diǎn),的運(yùn)動(dòng)速度相等,求證:.

小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問(wèn)題:

思路一:過(guò)點(diǎn),交于點(diǎn),先證,再證,從而證得結(jié)論成立;

思路二:過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn),先證,再證,從而證得結(jié)論成立.

請(qǐng)你任選一種思路,完整地書(shū)寫(xiě)本小題的證明過(guò)程(如用兩種方法作答,則以第一種方法評(píng)分)

2)類(lèi)比探究:如圖,若在中,,,且點(diǎn),的運(yùn)動(dòng)速度之比是,求的值;

3)延伸拓展:如圖,若在中,,,記,且點(diǎn)的運(yùn)動(dòng)速度相等,試用含的代數(shù)式表示(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)火車(chē)站進(jìn)行了大規(guī)模的改建,改建后的火車(chē)站除原有的普通售票窗口外,新增了自動(dòng)打印車(chē)票的無(wú)人售票窗口.某日,從早8點(diǎn)開(kāi)始到上午11點(diǎn),每個(gè)普通售票窗口售出的車(chē)票數(shù)y1(張)與售票時(shí)間x(小時(shí))的正比例函數(shù)關(guān)系滿(mǎn)足圖中的圖象,每個(gè)無(wú)人售票窗口售出的車(chē)票數(shù)y2(張)與售票時(shí)間x(小時(shí))的函數(shù)關(guān)系滿(mǎn)足圖中的圖象.

1)圖中圖象的前半段(含端點(diǎn))是以原點(diǎn)為頂點(diǎn)的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達(dá)式為   ,其中自變量x的取值范圍是   

2)若當(dāng)天共開(kāi)放5個(gè)無(wú)人售票窗口,截至上午9點(diǎn),兩種窗口共售出的車(chē)票數(shù)不少于1450張,則至少需要開(kāi)放多少個(gè)普通售票窗口?

3)上午10點(diǎn)時(shí),每個(gè)普通售票窗口與每個(gè)無(wú)人售票窗口售出的車(chē)票數(shù)恰好相同,試確定圖中圖象的后半段一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Ay軸上一點(diǎn),其坐標(biāo)為(06),點(diǎn)Bx軸的正半軸上.點(diǎn)P,Q均在線段AB上,點(diǎn)P的橫坐標(biāo)為m,點(diǎn)Q的橫坐標(biāo)大于m,在△PQM中,若PMx軸,QMy軸,則稱(chēng)△PQM為點(diǎn)P,Q肩三角形.

1)若點(diǎn)B坐標(biāo)為(4,0),且m2,則點(diǎn)P,B肩三角形的面積為   ;

2)當(dāng)點(diǎn)PQ肩三角形是等腰三角形時(shí),求點(diǎn)B的坐標(biāo);

3)在(2)的條件下,作過(guò)O,P,B三點(diǎn)的拋物線yax2+bx+c

①若M點(diǎn)必為拋物線上一點(diǎn),求點(diǎn)P,Q肩三角形面積Sm之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍.

當(dāng)點(diǎn)P,Q肩三角形面積為3,且拋物線yax2+bx+c與點(diǎn)P,Q肩三角形恰有兩個(gè)交點(diǎn)時(shí),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)旅游業(yè)的發(fā)展,某市新建一座景觀橋.橋的拱肋ADB可視為拋物線的一部分,橋面AB可視為水平線段,橋面與拱肋用垂直于橋面的桿狀景觀燈連接,拱肋的跨度AB40米,橋拱的最大高度CD16(不考慮燈桿和拱肋的粗細(xì)),求與CD的距離為5米的景觀燈桿MN的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做神奇四邊形.順次連接四邊形各邊中點(diǎn)得到的四邊形叫做中點(diǎn)四邊形.

1)判斷:

①在平行四邊形、矩形、菱形中,一定是神奇四邊形的是

②命題:如圖1,在四邊形中,則四邊形是神奇四邊形.此命題是_____(填“真”或“假”)命題;

③神奇四邊形的中點(diǎn)四邊形是

2)如圖2,分別以的直角邊和斜邊為邊向外作正方形和正方形,連接

①求證:四邊形是神奇四邊形;

②若,求的長(zhǎng);

3)如圖3,四邊形是神奇四邊形,若分別是方程的兩根,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案