【題目】在矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),沿AB邊向點B以每秒2cm的速度移動,同時點Q從點D出發(fā)沿DA邊向點A以每秒1cm的速度移動,P、Q其中一點到達終點時,另一點隨之停止運動.設運動時間為t秒.回答下列問題:
(1)如圖①,幾秒后△APQ的面積等于5cm2.
(2)如圖②,若以點P為圓心,PQ為半徑作⊙P.在運動過程中,是否存在t值,使得點C落在⊙P上?若存在,求出t的值;若不存在,請說明理由.
(3)如圖③,若以Q為圓心,DQ為半徑作⊙Q,當⊙Q與AC相切時
①求t的值.
②如圖④,若點E是此時⊙Q上一動點,F是BE的中點,請直接寫出CF的最小值.
【答案】(1)1秒后△APQ的面積為5;(2)當t=﹣10+2時,點C落在⊙P上;(3)①;②CF的最小值為.
【解析】
(1)利用三角形的面積公式構建方程即可解決問題.
(2)如圖②中,連接PC,根據PQ=PC,利用勾股定理構建方程即可解決問題.
(3)①如圖③中,設⊙Q與AC相切于點H,連接QH.在Rt△AQH中,利用勾股定理構建方程即可解決問題.
②如圖④中,連接QE,BQ,取BQ的中點M,連接FM,CM,作MN⊥CD于N.求出CM,MF,根據CF≥CM-MF可即可解決問題.
(1)由題意:AP=2t,DQ=t.則AQ=6﹣t.
則×2t(6﹣t)=5,
整理得t2﹣6t+5=0,
解得t=1或5(舍棄),
∴1秒后△APQ的面積為5.
(2)如圖②中,連接PC.
∵⊙P經過點C,
∴PQ=PC,
∵PA2+AQ2=PB2+BC2,
∴4t2+(6﹣t)2=(8﹣2t)2+62,
解得t=﹣10+2或﹣10﹣2 (舍棄),
∴當t=﹣10+2時,點C落在⊙P上.
(3)①如圖③中,設⊙Q與AC相切于點H,連接QH.
∵CD、CH是圓的切線,
∴CD=CH=8,
∵QD=QH=t,AC==10,
∴AH=2,
∵QH⊥AC,
∴∠AHQ=90°,
∴AQ2=HQ2+AH2,
∴(6﹣t)2=t2+22,
∴t=,
∴t=時,⊙Q與AC相切.
②如圖④中,連接QE,BQ,取BQ的中點M,連接FM,CM,作MN⊥CD于N.
∵MQ=MB,FB=FE,
∴FMEQ=DQ=,
∵AD∥MN∥BC,QM=MB,
∴DN=NC=4,MN= (DQ+BC)=,
∴CM===,
∵CF≥CM﹣FN,
∴CF≥,
∴CF的最小值為.
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣2x+m﹣1=0.
(1)若方程有兩個不相等的實數根,求m的取值范圍;
(2)若方程有一個實數根是5,求m的值及此時方程的另一個根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x+c的頂點A在直線l:y=x﹣a上,點D(3,0)為拋物線上一點.
(1)求a的值;
(2)拋物線與y軸交于點B,試判斷△ABD的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知、兩點是直線與軸的正半軸,軸的正半軸的交點,如果,的長分別是x2-14x+48=0的兩個根,射線平分交軸于點,
(1)求,的長.
(2)求點的坐標.
(3)在坐標平面內找點,使,,,四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2﹣4x+c的圖象經過坐標原點,與x軸交于點A(﹣4,0).
(1)求二次函數的解析式;
(2)在拋物線上存在點P,滿足S△AOP=8,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A.微信、B.支付寶、C.現金、D.其他.該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為________度;
(3)若該超市這一周內有1800名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
(4) 現隨機抽取甲、乙兩名購買者進行調查,試用列表或樹形圖的方法求抽取的兩人恰好都是用微信支付概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,點P是半徑OB上一動點(不與O,B重合),過點P作射線l⊥AB,分別交弦BC,于D、E兩點,在射線l上取點F,使FC=FD.
(1)求證:FC是⊙O的切線;
(2)當點E是的中點時,
① 若∠BAC=60°,判斷以O,B,E,C為頂點的四邊形是什么特殊四邊形,并說明理由;
② 若,且AB=20,求OP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產訂單,按要求在15天內完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數)每件產品的成本是p元,p與x之間符合一次函數關系,部分數據如表:
天數(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 7.5 | 8.5 | 10 | 12 |
任務完成后,統(tǒng)計發(fā)現工人李師傅第x天生產的產品件數y(件)與x(天)滿足如下關系:y=,
設李師傅第x天創(chuàng)造的產品利潤為W元.
(1)直接寫出p與x,W與x之間的函數關系式,并注明自變量x的取值范圍:
(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?
(3)任務完成后.統(tǒng)計發(fā)現平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com