【題目】如圖,數(shù)軸上A、B兩點(diǎn)對應(yīng)的有理數(shù)分別為20和30,點(diǎn)P和點(diǎn)Q分別同時(shí)從點(diǎn)A和點(diǎn)O出發(fā),以每秒2個(gè)單位長度,每秒4個(gè)單位長度的速度向數(shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),則P、Q兩點(diǎn)對應(yīng)的有理數(shù)分別是;PQ=;
(2)點(diǎn)C是數(shù)軸上點(diǎn)B左側(cè)一點(diǎn),其對應(yīng)的數(shù)是x,且CB=2CA,求x的值;
(3)在點(diǎn)P和點(diǎn)Q出發(fā)的同時(shí),點(diǎn)R以每秒8個(gè)單位長度的速度從點(diǎn)B出發(fā),開始向左運(yùn)動(dòng),遇到點(diǎn)Q后立即返回向右運(yùn)動(dòng),遇到點(diǎn)P后立即返回向左運(yùn)動(dòng),與點(diǎn)Q相遇后再立即返回,如此往返,直到P、Q兩點(diǎn)相遇時(shí),點(diǎn)R停止運(yùn)動(dòng),求點(diǎn)R運(yùn)動(dòng)的路程一共是多少個(gè)單位長度?點(diǎn)R停止的位置所對應(yīng)的數(shù)是多少?
【答案】
(1)24和8;16
(2)解:∵CB=2CA,
∴30﹣x=2(x﹣20)或30﹣x=2(20﹣x),
∴x= 或10
(3)解:設(shè)t秒后P、Q相遇.則有4t﹣2t=20,
∴t=10,
∴R運(yùn)動(dòng)的路程一共是8×10=80.此時(shí)P、Q、R在同一點(diǎn),所以點(diǎn)R的位置所對應(yīng)的數(shù)是40
【解析】解:(1)t=2時(shí),OQ=2×4=8,PA=2×2=4,OP=24, ∴P、Q分別表示24和8,PQ=24﹣8=16,
所以答案是24和8,16.
【考點(diǎn)精析】本題主要考查了數(shù)軸和代數(shù)式求值的相關(guān)知識點(diǎn),需要掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線;求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.﹣2x2y3xy2=﹣6x2y2
B.(﹣x﹣2y)(x+2y)=x2﹣4y2
C.6x3y2÷2x2y=3xy
D.(4x3y2)2=16x9y4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D
(1)求證:CD為⊙O的切線
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定一種新運(yùn)算 a△b=a×b﹣a+b+1.如,3△4=3×4﹣3+4+1=12﹣3+4+1=14,則﹣2△5= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別標(biāo)有數(shù)字1,2,3的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放進(jìn)盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)請用樹狀圖或列表分析,寫出(x,y)所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在反比例函數(shù) 圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于D,AE平分∠BAD,交BC于E,在△ABC外有一點(diǎn)F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點(diǎn)M,使得BM=2DE,連接ME
①求證:ME⊥BC;
②求∠EMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)[a]表示不超過a的最大整數(shù),例如:[2.3]=2,[﹣4 ]=﹣5,[5]=5.
(1)求[2 ]+[﹣3.6]﹣[﹣7]的值;
(2)令[a]=a﹣[a],求{2 }﹣[﹣2.4]+{﹣6 }.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如題圖,已知A(-4,2),B(n,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求m,n的值;
(2)求一次函數(shù)的關(guān)系式;、
(3)結(jié)合圖象直接寫出一次函數(shù)小于反比例函數(shù)的x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)為了解學(xué)生的體質(zhì)健康狀況,隨機(jī)抽取若干名學(xué)生進(jìn)行測試,測試結(jié)果分為A:良好、B:合格、C:不合格三個(gè)等級.并根據(jù)測試結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖,請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)此次調(diào)查共抽取了 人,扇形統(tǒng)計(jì)圖中C部分圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有1800名學(xué)生,請估計(jì)體質(zhì)健康狀況為“合格”的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com