【題目】如圖,已知矩形ABCD,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE、BE,若△ABE是等邊三角形,則=

【答案】
【解析】解:

過E作EM⊥AB于M,交DC于N,
∵四邊形ABCD是矩形,
∴DC=AB,DC∥AB,∠ABC=90°,
∴MN=BC,EN⊥DC,
∵延AC折疊B和E重合,△AEB是等邊三角形,
∴∠EAC=∠BAC=30°,
設(shè)AB=AE=BE=2a,則BC=a,
即MN=a,
∵△ABE是等邊三角形,EM⊥AB,
∴AM=a,由勾股定理得:EM==a,
∴△DCE的面積是×DC×EN=×2a×(a﹣a)=a2
△ABE的面積是AB×EM=×2a×a=a2 ,
== ,
故答案為:
過E作EM⊥AB于M,交DC于N,根據(jù)矩形的性質(zhì)得出DC=AB,DC∥AB,∠ABC=90°,設(shè)AB=AE=BE=2a,則BC=a,即MN=a,求出EN,根據(jù)三角形面積公式求出兩個(gè)三角形的面積,即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+4的圖象經(jīng)過點(diǎn)(3,﹣2)
(1)求這個(gè)函數(shù)解析式;
(2)在下面方格圖中畫出這個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AB為直徑作⊙O,與BC交于點(diǎn)D,點(diǎn)E是弧BD的中點(diǎn),連接AEBC于點(diǎn)FACB=2BAE.

(1)求證:AC是⊙O的切線;

(2)若BD=5,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有5個(gè)黑球和3個(gè)白球,這些球的大小、質(zhì)地完全相同,隨機(jī)從袋子中摸出4個(gè)球,則下列事件是必然事件的是( )
A.摸出的四個(gè)球中至少有一個(gè)球是白球
B.摸出的四個(gè)球中至少有一個(gè)球是黑球
C.摸出的四個(gè)球中至少有兩個(gè)球是黑球
D.摸出的四個(gè)球中至少有兩個(gè)球是白球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),則∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,這個(gè)規(guī)律是( )

A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2
D.3∠A=2(∠1+∠2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將多項(xiàng)式ab﹣2﹣a22﹣b)因式分解的結(jié)果是( 。

A. b﹣2)(a+a2 B. b﹣2)(a﹣a2

C. ab﹣2)(a+1 D. ab﹣2)(a﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0a0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明嘗試著將矩形紙片ABCD(如圖①,AD>CD)沿過A點(diǎn)的直線折疊,使得B點(diǎn)落在AD邊上的點(diǎn)F處,折痕為AE(如圖②);再沿過D點(diǎn)的直線折疊,使得C點(diǎn)落在DA邊上的點(diǎn)N處,E點(diǎn)落在AE邊上的點(diǎn)M處,折痕為DG(如圖③).如果第二次折疊后,M點(diǎn)正好在∠NDG的平分線上,那么矩形ABCD的長(zhǎng)BC與寬AB的關(guān)系是(
A.BC=2AB
B.BC= AB
C.BC=1.5AB
D.BC= AB

查看答案和解析>>

同步練習(xí)冊(cè)答案