【題目】如圖,在ABC中,ABAC,DBC邊上的中點,過A,CD三點的圓交BA的延長線于點E,連接EC

1)求證:∠E90°;

2)若AB6BC10,求AE的長.

【答案】1)見解析;(2

【解析】

1)連接AD,根據(jù)等腰三角形三線合一的性質(zhì)知∠ADC=∠ADB90°,從而知點A,CD在以AC為直徑的圓上,再根據(jù)圓周角定理可得答案;

2)證BAD∽△BCE,將有關(guān)線段長度代入計算可得.

解:(1)如圖,連接AD,

ABAC,DBC中點,

ADBC,即∠ADC=∠ADB90°,

∴點AC,D在以AC為直徑的圓上,

∴∠E90°;

2)∵BC10,

BDBC5,

∵∠B=∠B,∠ADB=∠E90°,

∴△BAD∽△BCE,

,即

解得:AE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,AC2,BD2,AC,BD相交于點O.邊AB_____,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點EF,連接EFAC相交于點G.旋轉(zhuǎn)過程中,當(dāng)點E為邊BC的四等分點時(BECE),CG_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,BABC20cm,AC30cm,點PA點出發(fā)沿AB方向以4cm/s的速度向B點運動,同時點QC點出發(fā)沿CA方向以3cm/s的速度向A點運動,設(shè)運動時間為xs

1)當(dāng)x時,求

2)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE5cm, 且tan∠EFC,那么矩形ABCD的周長_____________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長為2,現(xiàn)將它沿AB方向平移1個單位,得到正六邊形A′B′C′D′E′F′,則陰影部分A′BCDE′F′的面積是( 。

A.3B.4C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從共享單車、共享汽車等共享出行到共享充電寶、共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個領(lǐng)域迅速普及應(yīng)用,越來越多的企業(yè)與個人成為參與者與受益者,小宇上網(wǎng)查閱了相關(guān)資料,順便收集到四個共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號為A,BC,D的四張卡片(除編號和內(nèi)容外,其余完全相同),將這四張卡片背面朝上,洗勻放好.

1)從中隨機抽取一張,求剛好抽到“共享服務(wù)”的概率.

2)從中隨機抽取一張(不放回),再從中隨機抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號A,BC,D表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m與y=(m≠0)的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,AB=AC,A=36°,作底角ABC的平分線BDAC于點D,易得等腰BCD,作等腰BCD底角BCD的平分線CE,交BD于點E,得等腰CDE,再作等腰CDE底角CDE的平分線DF,交于CE于點F,若已知AB=b,BC=a,記ABC為第一個等腰三角形,BCD為第二個等腰三角形,則的值為_____;第n個等腰三角形的底邊長為_____.(含有b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+cx軸交于A,B兩點(A在點B的左側(cè)),且A(10),B(4,0),與y軸交于點CC點的坐標(biāo)為(0,﹣2),連接BC,以BC為邊,點O為對稱中心作菱形BDEC.Px軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點Px軸的垂線交拋物線于點Q,交BD于點M.

(1)求拋物線的解析式.

(2)x軸上是否存在一點P,使三角形PBC為等腰三角形,若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

(3)當(dāng)點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案