【題目】關(guān)于x的方程ax2-(3a+1)x+2(a+1)=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,且有x1+x2-x1·x2=1-a,求a的值.
【答案】-1.
【解析】
試題由關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,得到根的判別式的值大于0列出關(guān)于a的不等式,求出不等式的解集得到a的范圍,再利用根與系數(shù)的關(guān)系表示出兩根之和與兩根之積,代入已知的等式中得到關(guān)于a的方程,求出方程的解即可得到a的值.
試題解析:∵關(guān)于x的方程ax2-(3a+1)x+2(a+1)=0有兩個(gè)不相等的實(shí)根x1、x2,
∴△=(3a+1)2-8a(a+1)>0,即9a2+6a+1-8a2-8a=a2-2a+1=(a-1)2>0,即a≠1,a≠0,
且x1+x2=,x1x2=
∴x1-x1x2+x2==1-a,
即
∵a≠1,即a-1≠0,
∴a=-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,按照下列操作作圖:①以A為圓心,AC長(zhǎng)為半徑畫弧交AD的延長(zhǎng)線于點(diǎn)E;②以E為圓心,EC長(zhǎng)為半徑畫弧交DE的延長(zhǎng)線于點(diǎn)F;③分別以C,F為圓心,大于CF的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)N;④作射線EN,根據(jù)作圖,若∠ACB=72°,則∠FEN的度數(shù)為( 。
A. 54° B. 63° C. 72° D. 75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、C、D都在⊙O上,過(guò)點(diǎn)C作AC∥BD交OB延長(zhǎng)線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.
(1)求D點(diǎn)的坐標(biāo)和圓D的半徑;
(2)求sin ∠ACB的值和經(jīng)過(guò)C、A、B三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)設(shè)拋物線的頂點(diǎn)為F,證明直線AF與圓D相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB=30°.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)(x>0)和(x>0)的圖象分別是和.設(shè)點(diǎn)P在上,PA∥y軸交于點(diǎn)A,PB∥x軸,交于點(diǎn)B,△PAB的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點(diǎn)A(m,2),B(2,n).過(guò)點(diǎn)A作AC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,PC切⊙O于C交AB的延長(zhǎng)線于點(diǎn)P,∠CAP=35°,那么∠CPO的度數(shù)等于( 。
A. 15° B. 20° C. 25° D. 30°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com