【題目】如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).

(1)求反比例函數(shù)的關(guān)系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.

【答案】解:(1)將B坐標(biāo)代入直線y=x﹣2中得:m﹣2=2,解得:m=4,

B(4,2),即BE=4,OE=2。

設(shè)反比例解析式為,

將B(4,2)代入反比例解析式得:k=8,

反比例解析式為。

(2)設(shè)平移后直線解析式為y=x+b,C(a,a+b),

對(duì)于直線y=x﹣2,令x=0求出y=﹣2,得到OA=2,

過C作CDy軸,過B作BEy軸,

將C坐標(biāo)代入反比例解析式得:a(a+b)=8,

,

。

①②聯(lián)立,解得:b=7。

平移后直線解析式為y=x+7

解析(1)設(shè)反比例解析式為,將B坐標(biāo)代入直線y=x﹣2中求出m的值,確定出B坐標(biāo),將B坐標(biāo)代入反比例解析式中求出k的值,即可確定出反比例解析式。

(2)過C作CD垂直于y軸,過B作BE垂直于y軸,設(shè)y=x﹣2平移后解析式為y=x+b,C坐標(biāo)為(a,a+b),根據(jù)已知三角形ABC面積列出關(guān)系式,將C坐標(biāo)代入反比例解析式中列出關(guān)系式,兩關(guān)系式聯(lián)立求出b的值,即可確定出平移后直線的解析式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個(gè)數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為開展體育大課間活動(dòng),某學(xué)校需要購買籃球與足球若干個(gè),已知購買3個(gè)籃球和2個(gè)足球需求共需要575元,購買4個(gè)籃球和3個(gè)足球共需要785元.

購買一個(gè)籃球,一個(gè)足球各需多少元?

若體育老師帶了8000元去購買這種籃球與足球共80個(gè),由于數(shù)量較多,店主給出籃球與足球一律打八折的優(yōu)惠價(jià),那么他最多能購買多少個(gè)籃球?同時(shí)買了多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知A22)、B(﹣2,0)、C(﹣1,﹣2).

1)在平面直角坐標(biāo)系中畫出△ABC;

2)若點(diǎn)D與點(diǎn)C關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為   ;

3)求△ABC的面積;

4)已知點(diǎn)Px軸上一點(diǎn),若SABP5時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°,FAB延長線上一點(diǎn),點(diǎn)EBC上,且AE=CF

1)求證:ABE≌△CBF;

2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為提升硬件設(shè)施,決定采購80臺(tái)電腦,現(xiàn)有A,B兩種型號(hào)的電腦可供選擇.已知每臺(tái)A型電腦比B型的貴2000元,2臺(tái)A型電腦與3臺(tái)B型電腦共需24000元.

(1)分別求A,B兩種型號(hào)電腦的單價(jià);

(2)若AB兩種型號(hào)電腦的采購總價(jià)不高于38萬元,則A型電腦最多采購多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰長為5,一邊上的高為3,則底邊長為_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CDAB邊上的高.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著△ABC的三條邊逆時(shí)針走一圈回到A點(diǎn),速度為2cm/s,設(shè)運(yùn)動(dòng)時(shí)間為t s.

(1)求CD的長;

(2)t為何值時(shí),△ACP是等腰三角形?

(3)MBC上一動(dòng)點(diǎn),NAB上一動(dòng)點(diǎn),是否存在M,N使得AM+MN 的值最?如果有,請(qǐng)直接寫出最小值,如果沒有,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陳杰騎自行車去上學(xué),當(dāng)他以往常的速度騎了一段路時(shí),忽然想起要買某本書,于是又折回到剛經(jīng)過的一家書店,買到書后繼續(xù)趕去學(xué)校.以下是他本次上學(xué)的路程與所用時(shí)間的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:

(1)陳杰家到學(xué)校的距離是多少米?書店到學(xué)校的距離是多少米?

(2)陳杰在書店停留了多少分鐘?本次上學(xué)途中,陳杰一共行駛了多少米?

(3)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段陳杰騎車速度最快?最快的速度是多少米?

(4)如果陳杰不買書,以往常的速度去學(xué)校,需要多少分鐘?本次上學(xué)比往常多用多少分鐘?

查看答案和解析>>

同步練習(xí)冊(cè)答案