【題目】如圖,在矩形紙片ABCD中,AB=2,AD=3,E是AB的中點(diǎn),F是AD邊上的一個(gè)動(dòng)點(diǎn),將△AEF沿EF所在直線翻折,得到△A′EF,則A′C的最小值是( )
A. 5 B. 6 C. D. -1
【答案】D
【解析】
如下圖,連接CE,由已知易得BE=AE=1,BC=AD=3,由此在Rt△BCE中易得CE=,由折疊的性質(zhì)可知A′E=AE=1,這樣由三角形三邊間的關(guān)系可知,當(dāng)A′落在CE上時(shí),A′C最短,此時(shí)A′C=.
如下圖,連接CE,
∵點(diǎn)E是AB的中點(diǎn),AB=2,
∴BE=AE=1,
∵在矩形ABCD中,∠B=90°,BC=AD=3,
∴CE=,
∵點(diǎn)A′是由點(diǎn)A沿EF折疊得到的,
∴A′E=AE=1,
∴由三角形三邊間的關(guān)系可知:當(dāng)點(diǎn)A′剛好落在CE上時(shí),A′C最短,
∴A′C最短=CE-A′E=.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將7張相同的小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好被分割為兩個(gè)長方形,面積分別為S1,S2,已知小長方形紙片的長為a,寬為b,且a>b
(1)當(dāng)a=9,b=2,AD=30時(shí),請求:
①長方形ABCD的面積;
②S2﹣S1的值.
(2)當(dāng)AD=30時(shí),請用含a,b的式子表示S2﹣S1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,∠B<∠C,AD,AE分別是△ABC的高和角平分線,
(1)若∠B=30°,∠C=50°.則∠DAE的度數(shù)是 .(直接寫出答案)
(2)寫出∠DAE、∠B、∠C的數(shù)量關(guān)系: ,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)、,其中A表示的數(shù)為-2,表示的數(shù)為2,若在數(shù)軸上存在一點(diǎn),使得,則稱點(diǎn)叫做點(diǎn)、的“節(jié)點(diǎn)”,例如圖1所示,若點(diǎn)表示的數(shù)為0,有,則稱點(diǎn)為點(diǎn)、的“4節(jié)點(diǎn)”.
請根據(jù)上述規(guī)定回答下列問題:
(1)若點(diǎn)為點(diǎn)、的“節(jié)點(diǎn)”,且點(diǎn)在數(shù)軸上表示的數(shù)為-4,求的值.
(2)若點(diǎn)是數(shù)軸上點(diǎn)、的“5節(jié)點(diǎn)”,請你直接寫出點(diǎn)表示的數(shù)為____________;
(3)若點(diǎn)在數(shù)軸上(不與、重合),滿足、之間的距離是、之間距離的一半,且此時(shí)點(diǎn)為點(diǎn)、的“節(jié)點(diǎn)”,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對一張矩形紙片ABCD進(jìn)行折疊,具體操作如下:
第一步:先對折,使AD與BC重合,得到折痕MN,展開;
第二步:再一次折疊,使點(diǎn)A落在MN上的點(diǎn)A′處,并使折痕經(jīng)過點(diǎn)B,得到折痕BE,同時(shí),得到線段BA′,EA′,展開,如圖1;
第三步:再沿EA′所在的直線折疊,點(diǎn)B落在AD上的點(diǎn)B′處,得到折痕EF,同時(shí)得到線段B′F,展開,如圖2.
求證:(1)∠ABE=30°;
(2)四邊形BFB′E為菱形.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△CDE是以C為公共頂點(diǎn)的兩個(gè)等腰三角形,且AC=CB,CD=CE,連接BD、AE相交于點(diǎn)M,連接CM,∠CAB=∠CDE=50°,則∠BMC=( )
A. 30°B. 40°C. 50°D. 60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com