【題目】分)如圖,管中放置著三根同樣的繩子, ,

)小明從這三根繩子中隨機(jī)選一根,恰好選中繩子的概率是__________

)小明先從左端 , 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),再?gòu)挠叶?/span>, , 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),求這三根繩子能連結(jié)成一根長(zhǎng)繩的概率.

【答案】1 ;(2

【解析】試題分析:(1根據(jù)題意可知隨機(jī)選一根共有三種情況,找出選擇AA1的情況數(shù)即可求出概率;

(2)列表得出所有等可能的情況數(shù),找出這三根繩子能連結(jié)成一根長(zhǎng)繩的情況數(shù),最后利用概率公式即可得到答案.

解:根據(jù)題意可知隨機(jī)選一根共有三種情況,則恰好選中繩子AA1的概率是

如圖,

或者:

由上表可知,共有種等可能的情況,其中這三根繩子能連結(jié)成一根長(zhǎng)繩的情況有種,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長(zhǎng)度一半的長(zhǎng)為半徑圓弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正確的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACBC2,∠C90°,將一塊等腰三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CBD、E兩點(diǎn).如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:

1)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PDPE之間有什么數(shù)量關(guān)系?結(jié)合圖②說(shuō)明理由.

2)三角板繞點(diǎn)P旋轉(zhuǎn),△PCE是否能成為等腰三角形?若能,指出所有情況(直接寫(xiě)答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,BP= cm,CQ= cm

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;

3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?

4)若點(diǎn)Q以(3)中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,根據(jù)下列條件,求∠BPC的度數(shù).

1)若∠A=50°,則∠BPC=  ;

2)從上述計(jì)算中,我們能發(fā)現(xiàn):∠BPC=  (用∠A表示);

3)如圖2,若BP,CP分別是∠ABC與∠ACB的外角平分線,交于點(diǎn)P,則∠BPC=  .(用∠A表示),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,12;乙袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字123,小明從甲袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為x,再?gòu)囊掖须S機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)M的坐標(biāo)(x,y)

1)寫(xiě)出點(diǎn)M所有可能的坐標(biāo);

2)求點(diǎn)M在直線上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形 ABCD中,對(duì)角線 AC, BD交于點(diǎn)O,

(1)AO=BD,求證:四邊形 ABCD為矩形;

(2) AE BD于點(diǎn)E,CF BD于點(diǎn)F,求證:AE CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線ab,直線EF分別與直線a,b相交于點(diǎn)EF,點(diǎn)A,B分別在直線ab上,且在直線EF的左側(cè),點(diǎn)P是直線EF上一動(dòng)點(diǎn)(不與點(diǎn)E,F重合),設(shè)∠PAE=∠1,∠APB=∠2,∠PBF=∠3

1)如圖1,當(dāng)點(diǎn)P在線段EF上運(yùn)動(dòng)時(shí),試說(shuō)明∠1+3=2;(提示:過(guò)點(diǎn)PPMa

2)當(dāng)點(diǎn)P在線段EF外運(yùn)動(dòng)時(shí)有兩種情況,①如圖2寫(xiě)出∠1,∠2,∠3之間的關(guān)系并給出證明.

②如圖3所示,猜想∠1,∠2,∠3之間的關(guān)系(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案