【題目】在我市實(shí)施“城鄉(xiāng)環(huán)境綜合治理”期間,某校組織學(xué)生開展“走出校門,服務(wù)社會(huì)”的公益活動(dòng).八年級(jí)一班王浩根據(jù)本班同學(xué)參加這次活動(dòng)的情況,制作了如下的統(tǒng)計(jì)圖表: 該班學(xué)生參加各項(xiàng)服務(wù)的頻數(shù)、頻率統(tǒng)計(jì)表:

服務(wù)類別

頻數(shù)

頻率

文明宣傳員

4

0.08

文明勸導(dǎo)員

10

義務(wù)小警衛(wèi)

8

0.16

環(huán)境小衛(wèi)士

0.32

小小活雷鋒

12

0.24

請(qǐng)根據(jù)上面的統(tǒng)計(jì)圖表,解答下列問題:

(1)該班參加這次公益活動(dòng)的學(xué)生共有名;
(2)請(qǐng)補(bǔ)全頻數(shù)、頻率統(tǒng)計(jì)表和頻數(shù)分布直方圖;
(3)若八年級(jí)共有900名學(xué)生報(bào)名參加了這次公益活動(dòng),試估計(jì)參加文明勸導(dǎo)的學(xué)生人數(shù).

【答案】
(1)50
(2)環(huán)境小衛(wèi)士的頻數(shù)為50﹣(4+10+8+12)=16,

文明勸導(dǎo)員的頻率為10÷50=0.2,

補(bǔ)全頻率分布直方圖:

服務(wù)類別

頻數(shù)

頻率

文明宣傳員

4

0.08

文明勸導(dǎo)員

10

0.2

義務(wù)小警衛(wèi)

8

0.16

環(huán)境小衛(wèi)士

16

0.32

小小活雷鋒

12

0.24


(3)解:參加文明勸導(dǎo)的學(xué)生人數(shù)=900×0.2=180人.
【解析】解:(1)總?cè)藬?shù)=4÷0.08=50; (1)根據(jù)總數(shù)=頻數(shù)÷頻率進(jìn)行計(jì)算總?cè)藬?shù);(2)首先根據(jù)各小組的頻數(shù)和等于總數(shù)以及各小組的頻率和等于1或頻率=頻數(shù)÷總數(shù)進(jìn)行計(jì)算,然后正確補(bǔ)全即可;(3)根據(jù)樣本中文明勸導(dǎo)員所占的頻率來估算總體.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義運(yùn)算max{a,b}:當(dāng)a≥b時(shí),max{a,b}=a;當(dāng)a<b時(shí),max{a,b}=b.如max{﹣3,2}=2.

(1)max{,3}= ;
(2)已知y1=和y2=k2x+b在同一坐標(biāo)系中的圖象如圖所示,若max{,k2x+b}=,結(jié)合圖象,直接寫出x的取值范圍;
(3)用分類討論的方法,求max{2x+1,x﹣2}的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭(zhēng)議的情境:

請(qǐng)根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng)
(2)請(qǐng)你判斷誰的說法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為A(1,﹣1)的拋物線經(jīng)過點(diǎn)B(5,3),且與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).

(1)求拋物線的解析式;
(2)求點(diǎn)O到直線AB的距離;
(3)點(diǎn)M在第二象限內(nèi)的拋物線上,點(diǎn)N在x軸上,且∠MND=∠OAB,當(dāng)△DMN與△OAB相似時(shí),請(qǐng)你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)C的坐標(biāo)是(0,﹣3)

(1)求拋物線的函數(shù)表達(dá)式.
(2)求直線BC的函數(shù)表達(dá)式和∠ABC的度數(shù).
(3)P為線段BC上一點(diǎn),連接AC,AP,若∠ACB=∠PAB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2﹣2bx+c
(1)若拋物線的頂點(diǎn)坐標(biāo)為(2,﹣3),求b,c的值;
(2)若b+c=0,是否存在實(shí)數(shù)x,使得相應(yīng)的y的值為1,請(qǐng)說明理由;
(3)若c=b+2且拋物線在﹣2≤x≤2上的最小值是﹣3,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿BD對(duì)折,點(diǎn)A落在E處,BECD相交于F,若AD=3BD=6

1)求證:△EDF≌△CBF;

2)求∠EBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2bxca≠0)的圖象如圖所示,則下列結(jié)論正確的是

A.a<0
B.c>0
C.abc>0
D.b2-4ac<0

查看答案和解析>>

同步練習(xí)冊(cè)答案