【題目】某校就“遇見路人摔倒后如何處理”的問題,隨機抽取該校部分學生進行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖. 請根據(jù)圖中提供的信息,解答下列問題:
(1)該校隨機抽查了 名學生?請將圖1補充完整;
(2)在圖2中,“視情況而定”部分所占的圓心角是 度;
(3)在這次調(diào)查中,甲、乙、丙、丁四名學生都選擇“馬上救助”,現(xiàn)準備從這四人中隨機抽取兩人進行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側(cè)面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側(cè)面進行包貼(要求包貼時沒有重疊部分),紙帶在側(cè)面纏繞三圈,正好將這個三棱柱包裝盒的側(cè)面全部包貼滿.在圖3中,將三棱柱沿過點A的側(cè)棱剪開,得到如圖4的側(cè)面展開圖.為了得到裁剪的角度,我們可以根據(jù)展開圖拼接出符合條件的平行四邊形進行研究.
(1)請在圖4中畫出拼接后符合條件的平行四邊形;
(2)請在圖2中,計算裁剪的角度(即∠ABM的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求證:DG⊥BC
證明:∵EF⊥AB CD⊥AB
∴∠EFA=∠CDA=90°(垂直定義)
∴EF∥CD
∴∠1=∠
∵∠1=∠2(已知)
∴∠2=∠ACD(等量代換)
∴DG∥AC
∴∠DGB=∠ACB
∵AC⊥BC(已知)
∴∠ACB=90°(垂直定義)
∴∠DGB=90°即DG⊥BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在相同的條件下各射靶10次,每次命中的環(huán)數(shù)如下: 甲:9,7,8,9,7,6,10,10,6,8;
乙:7,8,8,9,7,8,9,8,10,6
(1)分別計算甲、乙兩組數(shù)據(jù)的方差;
(2)根據(jù)計算結(jié)果比較兩人的射擊水平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在求1+6+62+63+64+65+66+67+68+69的值時,小林發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的6倍,于是她設(shè):
S=1+6+62+63+64+65+66+67+68+69①
然后在①式的兩邊都乘以6,得:
6S=6+62+63+64+65+66+67+68+69+610②
②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,愛動腦筋的小林想:
如果把“6”換成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是( 。
A. B. C. D. a2014﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com