【題目】中,,過(guò)點(diǎn)作直線(xiàn),將繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是),射線(xiàn)分別交直線(xiàn)于點(diǎn)

1)問(wèn)題發(fā)現(xiàn):如圖1所示,若重合,則的度數(shù)為_________________

2)類(lèi)比探究:如圖2,所示,設(shè)的交點(diǎn)為M,當(dāng)M中點(diǎn)時(shí),求線(xiàn)段的長(zhǎng);

3)拓展延伸:在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)分別在的延長(zhǎng)線(xiàn)上時(shí),試探究四邊形的面積是否存在最小值,若存在,直接寫(xiě)出四邊形的最小面積;若不存在,請(qǐng)說(shuō)明理由

【答案】160°;(2;(3)存在,

【解析】

1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;

2)根據(jù)MA'B'的中點(diǎn),即可得出∠A=∠A'CM,進(jìn)而得到PB= ,依據(jù)tan∠BQC=tan∠A=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=;

3)依據(jù)S四邊形PA'B′Q=SPCQ-SA'CB'=SPCQ-,即可得到S四邊形PA'B′Q最小,即SPCQ最小,而SPCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到SPCQ的最小值=3,S四邊形PA'B′Q=3-

解(1)由旋轉(zhuǎn)得:

,

,

,

,

;

(2)因?yàn)?/span>M中點(diǎn),所以,

,

,

∵∠PCQ=PBC=90°,

∴∠BQC+BPC=BCP+BPC=90°

∴∠BQC=BCP=A,

,

,

;

(3) ,

最小,即最小,

,

PQ的中點(diǎn)G,

,即PQ=2CG,

當(dāng)最小時(shí), 最小,

, 重合,最小,

的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)兩軸分別交于,兩點(diǎn),與反比例函數(shù)圖象在第二象限交于點(diǎn).過(guò)點(diǎn)軸的垂線(xiàn)交該反比例函數(shù)圖象于點(diǎn),若,則點(diǎn)的縱坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是菱形,且,點(diǎn)是對(duì)角線(xiàn)上一點(diǎn),,繞點(diǎn)逆時(shí)針旋轉(zhuǎn)射線(xiàn),旋轉(zhuǎn)角度為,并交射線(xiàn)于點(diǎn),連接,,

1)①當(dāng)時(shí),補(bǔ)全圖形,并證明

②當(dāng)時(shí),直接寫(xiě)出線(xiàn)段,之間的關(guān)系;

2)在平面上找到一點(diǎn),使得對(duì)于任意的,總有,直接寫(xiě)出點(diǎn)的位置.

3)選擇下面任意一問(wèn)回答即可(全卷最多不超過(guò)100分)

A.證明(1)②的結(jié)論.

B.根據(jù)(2)中找到的的位置,證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有名學(xué)生,為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問(wèn)卷調(diào)查的學(xué)生只能從以下六個(gè)種類(lèi)中選擇一類(lèi)),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,回答下列問(wèn)題:

1)參與本次問(wèn)卷調(diào)查的學(xué)生共有_____人,其中選擇類(lèi)的人數(shù)有_____人;

2)在扇形統(tǒng)計(jì)圖中,求類(lèi)對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

3)若將這四類(lèi)上學(xué)方式視為“綠色出行”,請(qǐng)估計(jì)該校選擇“綠色出行”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B60°,AB2M為邊AB的中點(diǎn),N為邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線(xiàn)MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DECE,當(dāng)△CDE為等腰三角形時(shí),BN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)圓柱的底面平均分成若干個(gè)扇形,然后切開(kāi)拼成一個(gè)近似的長(zhǎng)方體,下列關(guān)于兩個(gè)幾何體的結(jié)論:①表面積不變;②表面積變大;③體積不變;④體積變大.其中結(jié)論正確的序號(hào)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于AB兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2 求:

(1)一次函數(shù)的解析式;

(2)△AOB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點(diǎn)E,過(guò)點(diǎn)EEFBC,垂足為F,延長(zhǎng)CDGB的延長(zhǎng)線(xiàn)于點(diǎn)P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為8,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)PAB邊上一動(dòng)點(diǎn),連接PD,PE,則PD+PE的長(zhǎng)度最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案