【題目】在中,,過(guò)點(diǎn)作直線(xiàn),將繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是),射線(xiàn)分別交直線(xiàn)于點(diǎn).
(1)問(wèn)題發(fā)現(xiàn):如圖1所示,若與重合,則的度數(shù)為_________________
(2)類(lèi)比探究:如圖2,所示,設(shè)與的交點(diǎn)為M,當(dāng)M為中點(diǎn)時(shí),求線(xiàn)段的長(zhǎng);
(3)拓展延伸:在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)分別在的延長(zhǎng)線(xiàn)上時(shí),試探究四邊形的面積是否存在最小值,若存在,直接寫(xiě)出四邊形的最小面積;若不存在,請(qǐng)說(shuō)明理由
【答案】(1)60°;(2);(3)存在,
【解析】
(1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;
(2)根據(jù)M為A'B'的中點(diǎn),即可得出∠A=∠A'CM,進(jìn)而得到PB= ,依據(jù)tan∠BQC=tan∠A=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=;
(3)依據(jù)S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四邊形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到S△PCQ的最小值=3,S四邊形PA'B′Q=3-.
解(1)由旋轉(zhuǎn)得:,
,
, ,
,
,
;
(2)因?yàn)?/span>M是中點(diǎn),所以,
,
,
,
.
∵∠PCQ=∠PBC=90°,
∴∠BQC+∠BPC=∠BCP+∠BPC=90°,
∴∠BQC=∠BCP=∠A,
,
,
;
(3) ,
最小,即最小,
,
取PQ的中點(diǎn)G,
,即PQ=2CG,
當(dāng)最小時(shí), 最小,
, 與重合,最小,
∵的最小值為,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與,兩軸分別交于,兩點(diǎn),與反比例函數(shù)圖象在第二象限交于點(diǎn).過(guò)點(diǎn)作軸的垂線(xiàn)交該反比例函數(shù)圖象于點(diǎn),若,則點(diǎn)的縱坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是菱形,且,點(diǎn)是對(duì)角線(xiàn)上一點(diǎn),,繞點(diǎn)逆時(shí)針旋轉(zhuǎn)射線(xiàn),旋轉(zhuǎn)角度為,并交射線(xiàn)于點(diǎn),連接,,,
(1)①當(dāng)時(shí),補(bǔ)全圖形,并證明;
②當(dāng)時(shí),直接寫(xiě)出線(xiàn)段,,之間的關(guān)系;
(2)在平面上找到一點(diǎn),使得對(duì)于任意的,總有,直接寫(xiě)出點(diǎn)的位置.
(3)選擇下面任意一問(wèn)回答即可(全卷最多不超過(guò)100分)
A.證明(1)②的結(jié)論. | B.根據(jù)(2)中找到的的位置,證明 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有名學(xué)生,為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問(wèn)卷調(diào)查的學(xué)生只能從以下六個(gè)種類(lèi)中選擇一類(lèi)),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,回答下列問(wèn)題:
(1)參與本次問(wèn)卷調(diào)查的學(xué)生共有_____人,其中選擇類(lèi)的人數(shù)有_____人;
(2)在扇形統(tǒng)計(jì)圖中,求類(lèi)對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若將這四類(lèi)上學(xué)方式視為“綠色出行”,請(qǐng)估計(jì)該校選擇“綠色出行”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點(diǎn),N為邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線(xiàn)MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE、CE,當(dāng)△CDE為等腰三角形時(shí),BN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一個(gè)圓柱的底面平均分成若干個(gè)扇形,然后切開(kāi)拼成一個(gè)近似的長(zhǎng)方體,下列關(guān)于兩個(gè)幾何體的結(jié)論:①表面積不變;②表面積變大;③體積不變;④體積變大.其中結(jié)論正確的序號(hào)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2 , 求:
(1)一次函數(shù)的解析式;
(2)△AOB的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BC,垂足為F,延長(zhǎng)CD交GB的延長(zhǎng)線(xiàn)于點(diǎn)P,連接BD.
(1)求證:PG與⊙O相切;
(2)若=,求的值;
(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為8,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)P是AB邊上一動(dòng)點(diǎn),連接PD,PE,則PD+PE的長(zhǎng)度最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com