【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸正半軸交于點A(3,0),與y軸交于點B(0,3),點P是x軸上一動點,過點P作x軸的垂線交拋物線于點C,交直線AB于點D,設(shè)P(x,0).
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)0<x<3時,求線段CD的最大值;
(3)在△PDB和△CDB中,當(dāng)其中一個三角形的面積是另一個三角形面積的2倍時,求相應(yīng)x的值;
(4)過點B,C,P的外接圓恰好經(jīng)過點A時,x的值為 . (直接寫出答案)
【答案】
(1)解:∵拋物線y=﹣x2+bx+c與x軸正半軸交于點A(3,0),與y軸交于點B(0,3),
∴﹣9+3b+c=0,c=3,
∴b=2,
∴拋物線解析式為y=﹣x2+2x+3;
(2)解:∵A(3,0),B(0,3),∴直線AB解析式為y=﹣x+3,
∵P(x,0).
∴D(x,﹣x+3),C(x,﹣x2+2x+3),
∵0<x<3,
∴CD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣ )2+ ,
當(dāng)x= 時,CD最大= ;
(3)解:由(2)知,CD=|﹣x2+3x|,DP=|﹣x+3|
①當(dāng)S△PDB=2S△CDB時,
∴PD=2CD,
即:2|﹣x2+3x|=|﹣x+3|,
∴x=± 或x=3(舍),
②當(dāng)2S△PDB=S△CDB時,
∴2PD=CD,
即:|﹣x2+3x|=2|﹣x+3|,
∴x=±2或x=3(舍),
即:綜上所述,x=± 或x=±2
(4)
【解析】解:(4)直線AB解析式為y=﹣x+3,
∴線段AB的垂直平分線l的解析式為y=x,
∵過點B,C,P的外接圓恰好經(jīng)過點A,
∴過點B,C,P的外接圓的圓心既是線段AB的垂直平分線上,也在線段PC的垂直平分線上,
∴ ,
∴x=± ,
所以答案是:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把棱長為1cm的若干個小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)
(1)該幾何體中有 小正方體?
(2)其中兩面被涂到的有 個小正方體;沒被涂到的有 個小正方體;
(3)求出涂上顏色部分的總面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點A(4,3),與y軸的負(fù)半軸交于點B,且OA=OB.
(1)求函數(shù)y=kx+b和y= 的表達(dá)式;
(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.
(1)若∠ABC=70°,則∠NMA的度數(shù)是 度.
(2)若AB=8cm,△MBC的周長是14cm.
①求BC的長度;
②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P( +1, ﹣1)在雙曲線y= (x>0)上.
(1)求k的值;
(2)若正方形ABCD的頂點C,D在雙曲線y= (x>0)上,頂點A,B分別在x軸和y軸的正半軸上,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】氣溫隨著高度的升高而下降,下降的一般規(guī)律是從地面到高空11 km處(包括11 km),每升高1 km氣溫下降6 ℃;高于11 km時,氣溫不再發(fā)生變化,地面的氣溫為20 ℃時,設(shè)高空中x km處的氣溫為y ℃.
(1)當(dāng)0≤x≤11時,求y和x之間的關(guān)系式;
(2)畫出氣溫隨高度(包括高于11 km)變化的圖像;
(3)在離地面4.5 km及14 km的高空處,氣溫分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).
(1)試說明如何平移線段AC,使其與線段ED重合;
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn),使AC的對應(yīng)邊為DE,請直接寫出點B的對應(yīng)點F的坐標(biāo);
(3)畫出(2)中的△DEF,并和△ABC同時繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣(2m+1)x+2m不經(jīng)過第三象限,且當(dāng)x>2時,函數(shù)值y隨x的增大而增大,則實數(shù)m的取值范圍是( )
A.0≤m≤1.5
B.m≥1.5
C.0≤m≤1
D.0<m≤1.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com