【題目】如圖,在中,,以AB為直徑的BD于點C,交AD于點E于點G,連接FE,FC

求證:GC的切線;

填空:

,,則的面積為______

的度數(shù)為______時,四邊形EFCD是菱形.

【答案】

【解析】

(1)由等腰三角形的性質(zhì)得出∠D=∠BCF,證出CF∥AD,由已知條件得出CG⊥CF,即可得出結論;

(2)解:①連接AC,BE,根據(jù)圓周角定理得到AC⊥BD,∠AEB=90°,根據(jù)等腰三角形的性質(zhì)得到BC=CD,解直角三角形得到DE=2-2,根據(jù)三角形的中位線的性質(zhì)得到DG=EG=DE=-1,CG=BE=1,于是得到結論;

②證出△BCF是等邊三角形,得出∠B=60°,CF=BF=AB,證出△ABD是等邊三角形,CF=AD,證出△AEF是等邊三角形,得出AE=AF=AB=AD,因此CF=DE,證出四邊形EFCD是平行四邊形,即可得出結論.

證明:,

,,

,

的切線;

解:連接AC,BE

的直徑,

,,

,

,

,,

,

,

,

,,

的面積

故答案為:;

的度數(shù)為時,四邊形EFCD是菱形理由如下:

,,

,

是等邊三角形,

,,

,

是等邊三角形,

,

,

是等邊三角形,

,

,

四邊形EFCD是平行四邊形,

,

四邊形EFCD是菱形;

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)遭受嚴重的自然災害,空軍某部隊奉命趕災區(qū)空投物資,已知空投物資離開飛機后在空中沿拋物線降落,拋物線頂點為機艙航口,如圖所示,如果空投物資離開處后下落的垂直高度米時,它測處的水平距離米,那么要使飛機在垂直高度米的高空進行空投,物資恰好準確地落在居民點處,飛機到處的水平距離應為________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線交于點O,點O又是正方形A1B1C1O的一個頂點,而且這兩個正方形的邊長相等.無論正方形A1B1C1O繞點O怎樣轉動,兩個正方形重疊部分的面積,總等于一個正方形面積的(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線lyx+2與直線lykx+b相交于點P1m

1)寫出k、b滿足的關系;

2)如果直線lykx+b與兩坐標軸圍成一等腰直角三角形,試求直線l的函數(shù)表達式;

3)在(2)的條件下,設直線lx軸相交于點A,點Qx軸上一動點,求當APQ是等腰三角形時的Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點EBC邊上一動點(點E不與點B、C重合),以線段DE為邊長,作正方形DEFG,使得點F、G落在直線DE的下方,連接AF、BF.當△ABF為等腰三角形時,BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐助給慈善機構.根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量 (單位:個)與銷售單價 (單位:元/)之間的對應關系如圖所示:

(1) 之間的函數(shù)關系是

(2)若許愿瓶的進價為6/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤 (單位:元)與銷售單價 (單位:元/)之間的函數(shù)關系式;

(3)若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家劉徽發(fā)展了重差術,用于測量不可到達的物體的高度,比如,通過下列步驟可測量山的高度PQ(如圖):

(1)測量者在水平線上的A處豎立一根竹竿,沿射線QA方向走到M處,測得山頂P、竹竿頂端BM在一條直線上;

(2)將該竹竿豎立在射線QA上的C處,沿原方向繼續(xù)走到N處,測得山頂P、竹竿頂端DN在一條直線上;

(3)設竹竿與AM、CN的長分別為、a1、a2,可得公式:PQ=.則上述公式中,d表示的是( )

A. QA的長 B. AC的長 C. MN的長 D. QC的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O△ABC內(nèi)一點,連結OBOC,并將AB、OB、OCAC的中點D、E、FG依次連結,得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點,OM=3∠OBC∠OCB互余,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠工人小王某月工作的部分信息如下:

信息一:工作時間:每天上午,下午,每月天;

信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于.

生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關系見下表:

生產(chǎn)甲產(chǎn)品數(shù)()

生產(chǎn)乙產(chǎn)品數(shù)()

所用時間 ()

信息三:按件計酬:每生產(chǎn)一件甲產(chǎn)品可得元,每生產(chǎn)一件乙產(chǎn)品可得.

根據(jù)以上信息,回答下列問題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘;

(2)小王該月最多能得多少元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別多少件.

查看答案和解析>>

同步練習冊答案