【題目】如圖,AB為一斜坡,其坡角為19.5°,緊挨著斜坡AB底部A處有一高樓,一數(shù)學(xué)活動(dòng)小組量得斜坡長AB15m,在坡頂B處測得樓頂D處的仰角為45°,其中測量員小剛的身高BC1.7米,求樓高AD.(參考數(shù)據(jù):sin19.5°≈,tan19.5°≈ ,最終結(jié)果精確到0.1m).

【答案】樓高AD21.0米.

【解析】

CFAD于點(diǎn)F,在直角ABE中求得BE,和AE的長,然后在直角CDE中利用三角函數(shù)求得DE的長,根據(jù)ADDF+AFCF+BC+BE求解.

CFAD于點(diǎn)F

RtABE中,∵AB15,

BEABsin19.5°15sin19.5°

AEABcos19.5°15cos19.5°,

RtCDF中,∵CFAE,∠DCF45°

DFCF,

ADDF+AFCF+BC+BE15cos19.5°+1.7+15sin19.5°≈21.0m).

答:樓高AD21.0米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)店銷售一部A型手機(jī)比銷售一部B型手機(jī)獲得的利潤多50元,銷售相同數(shù)量的A型手機(jī)和B型手機(jī)獲得的利潤分別為3000元和2000元.

(1)求每部A型手機(jī)和B型手機(jī)的銷售利潤分別為多少元?

(2)該商店計(jì)劃一次購進(jìn)兩種型號的手機(jī)共110部,其中A型手機(jī)的進(jìn)貨量不超過B型手機(jī)的2倍.設(shè)購進(jìn)B型手機(jī)n部,這110部手機(jī)的銷售總利潤為y元.

①求y關(guān)于n的函數(shù)關(guān)系式;

②該手機(jī)店購進(jìn)A型、B型手機(jī)各多少部,才能使銷售總利潤最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對B型手機(jī)出廠價(jià)下調(diào)m(30<m<100)元,且限定商店最多購進(jìn)B型手機(jī)80臺.若商店保持兩種手機(jī)的售價(jià)不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使這110部手機(jī)銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山西。┪沂∧程O果基地銷售優(yōu)質(zhì)蘋果,該基地對需要送貨且購買量在2000kg﹣5000kg(含2000kg5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):

方案A:每千克5.8元,由基地免費(fèi)送貨.

方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.

(1)請分別寫出按方案A,方案B購買這種蘋果的應(yīng)付款y(元)與購買量xkg)之間的函數(shù)表達(dá)式;

(2)求購買量x在什么范圍時(shí),選用方案A比方案B付款少;

(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購買盡可能多的這種蘋果,請直接寫出他應(yīng)選擇哪種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,以點(diǎn)B為圓心,BC長為半徑畫弧,交邊AB與點(diǎn)D,以A為圓心,AD長為半徑畫弧,交邊AC于點(diǎn)E,連接CD

1)若∠A=28°,求∠ACD的度數(shù);

2)設(shè)BC=a,AC=b

①線段AD的長是方程的一個(gè)根嗎?為什么?

②若AD=EC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,頂點(diǎn)A13)、B1,1)、C31).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移一個(gè)單位”為一次變換.如此這樣,連續(xù)經(jīng)過2018次變換后,正方形ABCD的對角線交點(diǎn)M的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)已知關(guān)于的方程

1求證:方程總有兩個(gè)實(shí)數(shù)根;

2如果為正整數(shù),且方程的兩個(gè)根均為整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線)與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),該拋物線的頂點(diǎn)的縱坐標(biāo)是.

1)求點(diǎn)、的坐標(biāo);

2)設(shè)直線與直線關(guān)于該拋物線的對稱軸對稱,求直線的表達(dá)式;

3)平行于軸的直線與拋物線交于點(diǎn)、,與直線交于點(diǎn).若,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,AEBC邊上的高線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過B,M 兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B⊙O的直徑.

(1)求證:AM⊙O的切線

(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案