【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.

(1)證明:四邊形ADCE為菱形.

(2)BC=6,AB=10,求菱形ADCE的面積.

【答案】(1)見(jiàn)解析;(2)S菱形ADCE=24.

【解析】

(1)先證明四邊形ADCE是平行四邊形,再由直角三角形斜邊上的中線性質(zhì)得出CD=

AB=AD,即可得出四邊形ADCE為菱形,(2)利用菱形的性質(zhì)、勾股定理求得菱形ADCE的對(duì)角線的長(zhǎng)度,然后根據(jù)菱形的面積=DEAC解答即可.

(1)∵在RtABC,ACB=90°,DAB中點(diǎn),

CDABAD,

又∵AECD,CEAB,

∴四邊形ADCE是平行四邊形,

∴平行四邊形ADCE是菱形,

(2)在RtABC,AC=8.

∵平行四邊形ADCE是菱形,

CO=OA,

又∵BD=DA,

DO是△ABC的中位線,

BC=2DO,

又∵DE=2DO,

BCDE=6,

S菱形ADCE=24.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:

數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使智慧三角形(畫(huà)出點(diǎn)的位置,保留作圖痕跡);

如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說(shuō)明理由;

運(yùn)用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫(xiě)出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=

材料2、已知實(shí)數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.

解:由題知m、n是方程x2﹣x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,根據(jù)材料1

m+n=1,mn=﹣1

根據(jù)上述材料解決下面問(wèn)題;

(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2=   ,x1x2=   

(2)已知實(shí)數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.

(3)已知實(shí)數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①a,b同號(hào);②當(dāng)x=1和x=3時(shí),函數(shù)值相等;③4a+b=0;④當(dāng)﹣1<x<5時(shí),y<0.其中正確的有( 。

A. ①② B. ②③ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過(guò)點(diǎn)C作CFCE交AB的延長(zhǎng)線于點(diǎn)F,EF交BC于點(diǎn)G.

(1)求證:CDE≌△CBF;

(2)當(dāng)DE=時(shí),求CG的長(zhǎng);

(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過(guò)程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長(zhǎng);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)放以下球類活動(dòng)項(xiàng)目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖(如圖,圖),請(qǐng)回答下列問(wèn)題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校共有學(xué)生1900人,請(qǐng)你估計(jì)該校喜歡D項(xiàng)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖,下列結(jié)論中,正確結(jié)論的有( 。﹤(gè)

b2﹣4ac>0;abc>0;8a+c>0;9a+3b+c<0.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長(zhǎng)沙”的號(hào)召,我市某街道決定從備選的五種樹(shù)中選購(gòu)一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹(shù)”的調(diào)查活動(dòng)(每人限選其中一種樹(shù)),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)所給信息解答以下問(wèn)題:

(1)這次參與調(diào)查的居民人數(shù)為:   ;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“楓樹(shù)”所在扇形的圓心角度數(shù);

(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬(wàn)人,請(qǐng)你估計(jì)這8萬(wàn)人中最喜歡玉蘭樹(shù)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=kx+b和函數(shù)y=ax+m的圖像如圖所示,求下列不等式(組)的解集

(1) kx+bax+m的解集是

(2)的解集是

(3)的解集是

(4)的解集是

查看答案和解析>>

同步練習(xí)冊(cè)答案