如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的長.
(1)證明見解析;(2).
解析試題分析:(1)利用對應(yīng)兩角相等,證明兩個三角形相似△ADF∽△DEC;
(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形
∴AD∥BC AB∥CD
∴∠ADF=∠CED ∠B+∠C=180°
∵∠AFE+∠AFD=180 ∠AFE=∠B
∴∠AFD=∠C
∴△ADF∽△DEC
(2)解:∵四邊形ABCD是平行四邊形
∴AD∥BC CD=AB=4
又∵AE⊥BC
∴ AE⊥AD
在Rt△ADE中,DE=
∵△ADF∽△DEC
∴
∴
AF=
考點:1.相似三角形的判定與性質(zhì);2.勾股定理;3.平行四邊形的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:計算題
(1)如圖1,在△ABC中,點D、E、Q分別在AB、AC、BC上,且DE//BC,AQ交DE于點P,求證:
(2)如圖,△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG,AF分別交DE于M,N兩點.
①如圖2,若AB=AC=1,直接寫出MN的長;
②如圖3,求證:MN=DM·EN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD的頂點坐標(biāo)分別為A(1,1),B(2,1),C(2,3),D(1,3).
(1)將矩形各頂點的橫、縱坐標(biāo)都乘以2,寫出各對應(yīng)點A1B1C1D1的坐標(biāo);順次連接A1B1C1D1,畫出相應(yīng)的圖形.
(2)求矩形A1B1C1D1與矩形ABCD的面積的比 _________ .
(3)將矩形ABCD的各頂點的橫、縱坐標(biāo)都擴(kuò)大n倍(n為正整數(shù)),得到矩形AnBnCnDn,則矩形AnBnCnDn與矩形ABCD的面積的比為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
課本作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請畫示意圖說明剪法。
我們有多種剪法,圖1是其中的一種方法:
定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線。
(1)請你在圖2中用兩種不同的方法畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個等腰三角形頂角的度數(shù)(若兩種方法分得的三角形成3對全等三角形,則視為同一種);
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分線,點D在BC邊上,點E在AC邊上,且AD=BD,DE=CE,設(shè)∠C=,試畫出示意圖,并求出所有可能的值;
(3)如圖3,△ABC中,AC=2,BC=3,∠C=2∠B,請畫出△ABC的三分線,并求出三分線的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖, Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E為BC邊的中點,連接DE.
(1)求證:DE與⊙O 相切.
(2)若tanC=,DE=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com