【題目】若兩個(gè)扇形滿足弧長的比等于它們半徑的比,則這稱這兩個(gè)扇形相似.如圖,如果扇形AOB與扇形A101B1是相似扇形,且半徑OA:O1A1=k(k為不等于0的常數(shù)).那么下面四個(gè)結(jié)論:①∠AOB=∠A101B1;②△AOB∽△A101B1;③=k;④扇形AOB與扇形A101B1的面積之比為k2 . 成立的個(gè)數(shù)為( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】D
【解析】解:由扇形相似的定義可得:
, 所以n=n1故①正確;
因?yàn)椤螦OB=∠A101B1 , OA:O1A1=k,所以△AOB∽△A101B1 , 故②正確;
因?yàn)椤鰽OB∽△A101B1 , 故==k,故③正確;
由扇形面積公式可得到④正確.
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解弧長計(jì)算公式(若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的),還要掌握扇形面積計(jì)算公式(在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲口袋中裝有2個(gè)相同的小球,它們分別寫有數(shù)字1和2;乙口袋中裝有3個(gè)相同的小球,它們分別寫有數(shù)字3,4和5,從兩個(gè)口袋中各隨機(jī)取出1個(gè)小球.用畫樹狀圖或列表的方法,求取出的2個(gè)小球上的數(shù)字之和為6的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(﹣3,﹣2).

(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)B(1,m),C(3,n)在該函數(shù)的圖象上,試比較m與n的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=1,AB=2

(1)求作⊙O,使它過點(diǎn)A、B、C(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)所作的圓中,求出劣弧的長l

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會正籌備一個(gè)“慶畢業(yè)”文藝匯演活動(dòng),現(xiàn)準(zhǔn)備從4名(其中兩男兩女)節(jié)目主持候選人中,隨機(jī)選取兩人擔(dān)任節(jié)目主持人,請用列表法或畫樹狀圖求選出的兩名主持人“恰好為一男一女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.

(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對稱,連接DB′,AD.

(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=30°,BC的垂直平分線交AB于點(diǎn)E,垂足為D,CE平分∠ACB.若BE=2,則AE的長為( 。

A.
B.1
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求進(jìn)行計(jì)算:
(1)解方程:2x2﹣3x=0;
(2)解不等式組:

查看答案和解析>>

同步練習(xí)冊答案