【題目】如圖1是甲、乙兩個(gè)圓柱形水槽的軸截面示意圖.乙槽中有一圓柱形鐵塊放在其中(圓柱形鐵塊的下底面完全落在水槽底面上),現(xiàn)將甲槽中的水勻速注人乙槽.甲、乙兩個(gè)水槽中水的深度與注水時(shí)間(分鐘)之間的關(guān)系如圖2所示.根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)圖2中折線表示 槽中的水的深度與注水時(shí)間的關(guān)系,線段表示 槽中的水的深度與注水時(shí)間的關(guān)系(填“甲”或“乙”),點(diǎn)的縱坐標(biāo)表示的實(shí)際意義是 ;
(2)當(dāng)時(shí),分別求出和與之間的函數(shù)關(guān)系式;
(3)注水多長(zhǎng)時(shí)間時(shí),甲、乙兩個(gè)水槽中的水深度相同?
(4)若乙槽底面積為平方厘米(壁厚不計(jì)) ,求乙槽中鐵塊的體積.
【答案】(1)乙;甲;乙槽中圓柱形鐵塊的高度是14厘米;(2)y甲=-2x+12,y乙=3x+2;(3)注水2分鐘;(4)84cm3
【解析】
(1)根據(jù)題目中甲槽向乙槽注水可以得到折線ABC是乙槽中水的深度與注水時(shí)間之間的關(guān)系,點(diǎn)B表示的實(shí)際意義是乙槽內(nèi)液面恰好與圓柱形鐵塊頂端相平;
(2)根據(jù)題意分別求出兩個(gè)水槽中y與x的函數(shù)關(guān)系式即可;
(3)根據(jù)(2)中y與x的函數(shù)關(guān)系式,令y相等即可得到水位相等的時(shí)間;
(4)用水槽的體積減去水槽中水的體積即可得到鐵塊的體積;
解:(1)由題意可得:
∵乙槽中含有鐵塊,
∴乙槽中水深不是勻速增長(zhǎng),
∴折線表示乙槽中水深與注水時(shí)間的關(guān)系,
線段DE表示甲槽中水深與注水時(shí)間的關(guān)系,
由點(diǎn)B的坐標(biāo)可得:
點(diǎn)B的縱坐標(biāo)表示的實(shí)際意義是:乙槽中圓柱形鐵塊的高度是14厘米;
故答案為:乙;甲;乙槽中圓柱形鐵塊的高度是14厘米;
(2)設(shè)線段AB、DE的解析式分別為:y甲=k1x+b1,y乙=k2x+b2,
∵AB經(jīng)過(guò)點(diǎn)(0,2)和(4,14),DE經(jīng)過(guò)(0,12)和(6,0),
∴,
解得:,
,
解得:,
∴當(dāng)時(shí), y甲=-2x+12,y乙=3x+2;
(3)由(2)可知:
令y甲=y乙,
即3x+2=-2x+12,
解得x=2,
∴當(dāng)2分鐘時(shí)兩個(gè)水槽水面一樣高.
(4)由圖象知:當(dāng)水槽中沒(méi)有沒(méi)過(guò)鐵塊時(shí)4分鐘水面上升了12cm,即1分鐘上升3cm,
當(dāng)水面沒(méi)過(guò)鐵塊時(shí),2分鐘上升了5cm,即1分鐘上升2.5cm,
設(shè)鐵塊的底面積為acm2,
則乙水槽中不放鐵塊的體積為:2.5×36cm3,
放了鐵塊的體積為3×(36-a)cm3,
∴1×3×(36-a)=1×2.5×36,
解得a=6,
∴鐵塊的體積為:6×14=84(cm3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分(不計(jì)其他因素條件),請(qǐng)你說(shuō)明誰(shuí)將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個(gè)人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁(yè)薄型紙比厚型紙輕0.8克,求A4薄型紙每頁(yè)的質(zhì)量.(墨的質(zhì)量忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的布袋中裝有4個(gè)只有顏色不同的球,其中1個(gè)黃球、1個(gè)藍(lán)球、2個(gè)紅球.
(1)任意摸出1個(gè)球,記下顏色后不放回,再任意摸出1個(gè)球.求兩次摸出的球恰好都是紅球的概率(要求畫(huà)樹(shù)狀圖或列表);
(2)現(xiàn)再將n個(gè)黃球放入布袋,攪勻后,使任意摸出1個(gè)球是黃球的概率為,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB、AC分別交于點(diǎn)D、E,DF⊥AC于點(diǎn)F.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的半徑為10,sinB=,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(類比概念)三角形的內(nèi)切圓是以三個(gè)內(nèi)角的平分線的交點(diǎn)為圓心,以這點(diǎn)到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語(yǔ)言敘述)
寫(xiě)出證明過(guò)程(利用圖1,寫(xiě)出已知、求證、證明)
(性質(zhì)應(yīng)用)
①初中學(xué)過(guò)的下列四邊形中哪些是圓外切四邊形 (填序號(hào))
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長(zhǎng)是 .
③圓外切四邊形的周長(zhǎng)為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平行四邊形ABCD中,AB=5,BC=8,cosB=,點(diǎn)E是BC邊上的動(dòng)點(diǎn),當(dāng)以CE為半徑的⊙C與邊AD有兩個(gè)交點(diǎn)時(shí),半徑CE的取值范圍是( )
A. 0<CE≤8 B. 0<CE≤5 C. 3<CE≤8 D. 3<CE≤5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A是半徑為6cm的⊙O上的定點(diǎn),動(dòng)點(diǎn)P從A出發(fā),以πcm/s的速度沿圓周按順時(shí)針?lè)较蜻\(yùn)動(dòng),當(dāng)點(diǎn)P回到A時(shí)立即停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t(s);
(1)當(dāng)t=6s時(shí),∠POA的度數(shù)是________;
(2)當(dāng)t為多少時(shí),∠POA=120°;
(3)如果點(diǎn)B是OA延長(zhǎng)線上的一點(diǎn),且AB=AO,問(wèn)t為多少時(shí),△POB為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com