【題目】如圖,AD、BE分別是△ABC的中線,AD、BE相交于點(diǎn)F.
(1)△ABC與△ABD的面積有怎樣的數(shù)量關(guān)系?為什么?
(2)△BDF與△AEF的面積有怎樣的數(shù)量關(guān)系?為什么?
【答案】
(1)解:△ABC的面積是△ABD的面積的2倍.
理由:∵AD是△ABC的中線,
∴BD=CD,
又∵點(diǎn)A為△ABC的頂點(diǎn),△ACD與△ABD同底等高,
∴△ACD的面積=△ABD的面積,
∴△ABC的面積是△ABD的面積的2倍
(2)解:△BDF與△AEF的面積相等.
理由:∵BE是△ABC的中線,
∴△ABC的面積是△ABE的面積的2倍,
又∵△ABC的面積是△ABD的面積的2倍,
∴△ABE的面積=△ABD的面積,
即△BDF的面積+△ABF的面積=△AEF的面積+△ABF的面積,
∴△BDF與△AEF的面積相等.
【解析】(1)根據(jù)三角形的中線將三角形分成面積相等的兩部分進(jìn)行判斷;(2)根據(jù)三角形的中線將三角形分成面積相等的兩部分,得出△ABE的面積=△ABD的面積,再根據(jù)△BDF的面積+△ABF的面積=△AEF的面積+△ABF的面積,得出結(jié)論即可.
【考點(diǎn)精析】本題主要考查了三角形的“三線”和三角形的面積的相關(guān)知識(shí)點(diǎn),需要掌握1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對(duì)邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi);三角形的面積=1/2×底×高才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A.C的坐標(biāo)分別為(10,0),(0,3),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)探究:
(1)動(dòng)手操作:
①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過點(diǎn)B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=;
②如圖2,若直角三角板ABC不動(dòng),改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過點(diǎn)B、C,那么∠ABD+∠ACD=
(2)猜想證明:
如圖3,∠BDC與∠A、∠B、∠C之間存在著什么關(guān)系,并說明理由;
(3)靈活應(yīng)用:
請(qǐng)你直接利用以上結(jié)論,解決以下列問題:
①如圖4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度數(shù);
(4)②如圖5,∠ABD,∠ACD的10等分線相交于點(diǎn)F1、F2、…、F9 ,
若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙兩個(gè)圓柱形容器(容器足夠高),底面半徑之比為1∶2,用一個(gè)管子在甲、乙兩個(gè)容器的15厘米高度處連通(即管子底端離容器底15厘米).已知只有乙容器中有水,水位高2厘米,如圖所示.現(xiàn)同時(shí)向甲、乙兩個(gè)容器注水,平均每分鐘注入乙容器的水量是注入甲容器水量的k倍.開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均為正整數(shù),當(dāng)甲、乙兩個(gè)容器的水位都到達(dá)連通管子的位置時(shí),停止注水.甲容器的水位有2次比乙容器的水位高1厘米,設(shè)注水時(shí)間為t分鐘.
(1)求k的值(用含a的代數(shù)式表示).
(2)當(dāng)甲容器的水位第一次比乙容器的水位高1厘米時(shí),求t的值.
(3)當(dāng)甲容器的水位第二次比乙容器的水位高1厘米時(shí),求a,k,t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于a,b的多項(xiàng)式2(a2﹣2ab﹣b2)﹣(a2+mab+2b2)不含ab項(xiàng),則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A(2,5)在反比例函數(shù)的圖象上,過點(diǎn)A的直線y=x+b交x軸于點(diǎn)B.
(1)求k和b的值;
(2)求△OAB的面積.
(3)請(qǐng)根據(jù)圖象直接寫出當(dāng)x取何值時(shí) ,一次函數(shù)值大于反比例函數(shù)值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在兩個(gè)圓中有兩條相等的弦,則下列說法正確的是( )
A.這兩條弦所對(duì)的弦心距相等B.這兩條弦所對(duì)的圓心角相等
C.這兩條弦所對(duì)的弧相等D.這兩條弦都被垂直于弦的半徑平分
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com