精英家教網 > 初中數學 > 題目詳情

【題目】當題目條件出現角平分線時,我們往往可以構造等腰三角形解決問題.如圖1,在ABC中,∠A2B,CD 平分∠ACB,AD2AC3,求 BC 的長.解決方法:如圖 2,在BC 邊上取點 E,使 ECAC,連接 DE.可得DEC≌△DAC BDE 是等腰三角形,所以 BC 的長為 5試通過構造等腰三角形解決問題:如圖 3ABC 中,ABAC,∠A20°,BD 平分∠ABC,要想求 AD 的長,僅需知道下列哪些線段的長(BCa, BDb, DCc

A.a bB.a cC.b cD.a、b c

【答案】A

【解析】

DE平分∠ADBAB交于點E,在AD邊上取點F,使,連接EF,通過證明、△AEF是等腰三角形,可得,從而得出我們只需知道線段BCBD的長即可求出AD的長.

DE平分∠ADBAB交于點E,在AD邊上取點F,使,連接EF

ABAC,∠A20°

BD 平分∠ABC

DE平分∠ADBAB交于點E

在△BDE△FDE

在△BCD和△BED

∴只需知道線段BCBD的長即可求出AD的長

故答案為:A

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小明在學習銳角三角函數中發(fā)現,將如圖所示的矩形紙片ABCD沿過點 B的直線折疊,使點A落在BC上的點E處,還原后,再沿過點E的直線折疊,使點A落在BC上的點F處,這樣就可以求出67.5°角的正切值是

A. 1 B. 1 C. 2.5 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當a取不同的實數時在得到的代數式a24a的值中是否存在最小值?請說明理由.

(3)應用:如圖.已知線段AB6MAB上的一個動點,設AMx,以AM為一邊作正方形AMND,再以MBMN為一組鄰邊作長方形MBCN.問:當點MAB上運動時,長方形MBCN的面積是否存在最大值?若存在,請求出這個最大值;否則請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:長方形ABCD中,AD=10,AB=4,點Q是BC的中點,點P在AD邊上運動,當BPQ是等腰三角形時,AP的長為 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,AEBC于點E,點F,G分別是AB,AD的中點,連接EF,FG,若∠EFG=90°,則FG的長為_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是“作一個角等于30°”的尺規(guī)作圖過程

作法如圖,(1)作射線AD

2)在射線AD上任意取一點O(點O不與點A重合);

3)以點O為圓心,OA為半徑作⊙O,交射線AD于點B

4)以點B為圓心,OB為半徑作弧,交⊙O于點C

5)作射線AC

DAC即為所求作的30°角

請回答該尺規(guī)作圖的依據是_________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在長方形中,,是折線上的一個動點,點是點關于直線的對稱點,在點的運動過程中,使是等腰三角形的共有__________個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地設他們同時出發(fā),運動的時間為(分),與乙地的距離為(米),圖中線段EF,折線分別表示兩人與乙地距離和運動時間之間的函數關系圖象

1)李越騎車的速度為 /分鐘;F點的坐標為 ;

2)求李越從乙地騎往甲地時, 之間的函數表達式;

3)求王明從甲地到乙地時, 之間的函數表達式;

4)求李越與王明第二次相遇時的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知直線y=2x+2y軸、x軸分別交于A、B兩點,以B為直角頂點在第二象限作等腰RtABC

1)求點C的坐標,并求出直線AC的關系式.

2)如圖2,直線CBy軸于E,在直線CB上取一點D,連接AD,若AD=AC,求證:BE=DE

3)如圖3,在(1)的條件下,直線ACx軸于MP,k)是線段BC上一點,在線段BM上是否存在一點N,使BPN的面積等于BCM面積的?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案