【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).下表是該市居民戶一表生活用水階梯式計(jì)費(fèi)價(jià)格表的部分信息:
自來水銷售價(jià)格 | 污水處理價(jià)格 | |
每戶每月用水量 | 單價(jià):元/噸 | 單價(jià):元/噸 |
噸及以下 | ||
超過 17 噸但不超過 30 噸的部分 | ||
超過 30 噸的部分 |
說明:①每戶產(chǎn)生的污水量等于該戶自來水用水量;②水費(fèi)=自來水費(fèi)用+污水處理費(fèi).
(1)設(shè)小王家一個(gè)月的用水量為噸,所應(yīng)交的水費(fèi)為元,請寫出與的函數(shù)關(guān)系式;
(2)隨著夏天的到來,用水量將增加.為了節(jié)省開支,小王計(jì)劃把7月份的水費(fèi)控制在不超過家庭月收入的.若小王家的月收入為元,則小王家7月份最多能用多少噸水?
【答案】(1)y= ;(2)40噸.
【解析】
(1)由水費(fèi)=自來水費(fèi)+污水處理,分段得出y與x的函數(shù)關(guān)系式;
(2)先判斷用水量超過30噸,繼而再由水費(fèi)不超過184,可得出不等式,解出即可.
解:(1)設(shè)小王家一個(gè)月的用水量為x噸,所應(yīng)交的水費(fèi)為y元,則
①當(dāng)用水量17噸及以下時(shí),y=(2.2+0.8)x=3x;
②當(dāng)17<x≤30時(shí),y=17×2.2+4.2(x17)+0.8x=5x34;
③當(dāng)x>30時(shí),y=17×2.2+13×4.2+6(x30)+0.8x=6.8x88.
∴y= ;
(2)當(dāng)用水量為30噸時(shí),水費(fèi)為:6.8×3088=116元,9200×2%=184元,
∵116<184,
∴小王家七月份的用水量超過30噸,
設(shè)小王家7月份用水量為x噸,
由題意得:6.8x88≤184,
解得:x≤40,
∴小王家七月份最多用水40噸.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)大小一樣的直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到△DEF的位置,AB=10,DH=4,平移距離為6,則陰影部分面積是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)計(jì)劃購進(jìn)若干個(gè)甲種規(guī)格的排球和乙種規(guī)格的足球. 如果購買20個(gè)甲種規(guī)格的排球和15個(gè)乙種規(guī)格的足球,一共需要花費(fèi)2050元; 如果購買10個(gè)甲種規(guī)格的排球和20個(gè)乙種規(guī)格的足球,一共需要花費(fèi)1900元.
(1)求每個(gè)甲種規(guī)格的排球和每個(gè)乙種規(guī)格的足球的價(jià)格分別是多少元?
(2)如果學(xué)校要購買甲種規(guī)格的排球和乙種規(guī)格的足球共50個(gè),并且預(yù)算總費(fèi)用不超過3210元,那么該學(xué)校至多能購買多少個(gè)乙種規(guī)格的足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用1塊A型鋼板可制成1塊C型鋼板、3塊D型鋼板;用1塊B型鋼板可制成2塊C型鋼板、1塊D型鋼板.
(1)現(xiàn)需150塊C型鋼板、180塊D型鋼板,則怡好用A型、B型鋼板各多少塊?
(2)若A、B型鋼板共100塊,現(xiàn)需C型鋼板至多150塊,D型鋼板不超過204塊,共有幾種方案?
(3)若需C型鋼板80塊,D型鋼板不多于45塊(A型、B型鋼板都要使用).求A、B型鋼板各需多少塊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,三邊分別為a、b、c,其中 ,若關(guān)于x的方程 有兩個(gè)相等的實(shí)數(shù)根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F在線段AB上,點(diǎn)E、G在線段CD上,AB∥CD.
(1)若BC平分∠ABD,∠D=100°,求∠ABC的度數(shù).
解:∵AB∥CD(已知),
∴∠ABD+∠D=180°,( )
∵∠D=100°,(已知)
∴∠ABD= °,
∵BC平分∠ABD,(已知)
∴∠ABC=∠ABD=40°.(角平分線的定義)
(2)若∠1=∠2,求證:AE∥FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把六張大小形狀完全相同的小平行四邊形卡片(如圖)放在一個(gè)底面為平行四邊形的盒子底部,兩種放置方法如圖2、圖3所示,其中3中的重疊部分是平行四邊形EFGH,若EH=2GH,且圖2中陰影部分的周長比圖3中陰影部分的周長大3.則AB﹣AD的值為( )
A.0.5B.1C.1.5D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的解題過程(在下面的橫線上,填寫相應(yīng)的結(jié)論或推理的依據(jù)):
已知:△ABC,∠A、∠B、∠C之和為多少?為什么?
解:∠A+∠B+∠C=180°
理由:過C作CD//AB,并延長BC到E
∵CD//________(已作)
∴∠________=∠ACD(兩直線平行,內(nèi)錯(cuò)角相等)
且∠B=∠___________(________________)
而∠DCE+∠ACD+∠ACB=_________°
∴∠________+∠B+∠ACB=180°(__________)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com