精英家教網 > 初中數學 > 題目詳情
閱讀下面材料,并解答下列各題:
在形如ab=N的式子中,我們已經研究過兩種情況:
①已知a和b,求N,這是乘方運算;
②已知b和N,求a,這是開方運算;
現在我們研究第三種情況:已知a和N,求b,我們把這種運算叫做對數運算.
定義:如果ab=N(a>0,a≠1,N>0),則b叫做以a為底N的對數,記著b=logaN.
例如:因為23=8,所以log28=3;因為2-3=
1
8
,所以log2
1
8
=-3

(1)根據定義計算:
①log381=
 
;②log33=
 
;③log31=
 
;
④如果logx16=4,那么x=
 

(2)設ax=M,ay=N,則logaM=x,logaN=y(a>0,a≠1,M、N均為正數),
∵ax•ay=ax+y,∴ax+y=M•N∴l(xiāng)ogaMN=x+y,
即logaMN=logaM+logaN
這是對數運算的重要性質之一,進一步,我們還可以得出:
logaM1M2M3…Mn=
 
(其中M1、M2、M3、…、Mn均為正數,a>0,a≠1)
loga
M
N
=
 
(a>0,a≠1,M、N均為正數).
分析:(1)根據題中給出的對數的運算的定義和法則計算即可;
(2)根據題中給出的對數運算法則總結即可得出下面兩個式子的答案.
解答:解:根據題中給出的已知條件可得:(1)①4,②1;③0;④2(每空1分,共4分)
(2)logaM1+logaM2+logaM3+logaMn
logaM-logaN(每空2分,共4分)
故答案為:(1)①4,②1;③0;④2;(2)logaM1+logaM2+logaM3+logaMn,logaM-logaN
點評:本題立意比較新穎,根據題中條件計算并且推算出對數運算的法則,考查了學生的舉一反三的能力和對新知識的掌握,屬于基礎題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

(2013•珠海)閱讀下面材料,并解答問題.
材料:將分式
-x4-x2+3
-x2+1
拆分成一個整式與一個分式(分子為整數)的和的形式.
解:由分母為-x2+1,可設-x4-x2+3=(-x2+1)(x2+a)+b
則-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵對應任意x,上述等式均成立,∴
a-1=1
a+b=3
,∴a=2,b=1
-x4-x2+3
-x2+1
=
(-x2+1)(x2+2)+1
-x2+1
=
(-x2+1)(x2+2)
-x2+1
+
1
-x2+1
=x2+2+
1
-x2+1

這樣,分式
-x4-x2+3
-x2+1
被拆分成了一個整式x2+2與一個分式
1
-x2+1
的和.
解答:
(1)將分式
-x4-6x2+8
-x2+1
拆分成一個整式與一個分式(分子為整數)的和的形式.
(2)試說明
-x4-6x2+8
-x2+1
的最小值為8.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下面材料,并解答后面的問題:
1
6
+
5
=
1.(
6
-
5
)
(
6
+
5
)(
6
+
5
)
=
6
-
5

1
5
+2
=
1.(
5
-2)
(
5
+2)(
5
-2)
=
5
-2

1
4
+
3
=
1.(
4
-
3
)
(
4
+
3
)(
4
-
3
)
=
4
-
3

(1)觀察上面的等式,請直接寫出
1
n+1
+
n
的結果
n+1
-
n
n+1
-
n

(2)計算(
n+1
+
n
)(
n+1
-
n
)=
1
1
,此時稱
n+1
+
n
n+1
-
n
互為有理化因式;
(3)請利用上面的規(guī)律與解法計算:
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…+
1
100
+
99

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下面材料,并解答下列問題:
在形如ab=N的式子中,我們已經研究過兩種情況:
①已知a和b,求N,這是乘方運算;
②已知b和N,求a,這是開方運算.
現在我們研究第三種情況:已知a和N,求b,我們把這種運算叫作對數運算.
定義:如果ab=N(a>0.a≠1,N>0),則b叫作以a為底的N的對數,記作b=logaN.
例如:因為23=8,所以log28=3;因為2-3=
1
8
,所以log2
1
8
=-3

(1)根據定義計算:
①log381=
4
4
;   ②log33=
1
1
;
③log31=
0
0
;    ④如果logx16=4,那么x=
±2
±2

(2)設ax=M,ay=N,則logaN=y(a>0,a≠1,M、N均為正數).用logaM,logaN的代數式分別表示logaMN及loga
M
N
,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年山東省聊城地區(qū)八年級下學期期中考試數學試卷(帶解析) 題型:解答題

閱讀下面材料,并解答后面的問題:
;;
.
(1)觀察上面的等式,請直接寫出的結果        ;
(2)計算=          ,此時稱互為有理化因式;
(3)請利用上面的規(guī)律與解法計算:…+ 。

查看答案和解析>>

同步練習冊答案