【題目】如圖,AB切⊙O于點B,OA交⊙O于C點,過C作DC⊥OA交AB于D,且BD:AD=1:2.
(1)求∠A的正切值;
(2)若OC=1,求AB及的長.
【答案】(1)(2)
【解析】試題分析:(1)易知DB、DC都是⊙O的切線,由切線長定理可得DB=DC,那么結合已知條件則有:DC:AD=1:2;即Rt△ACD中,sinA=,由此可求出∠A的度數(shù),進而可的∠A的正切值.
(2)連接OB.在構建的含30°角的Rt△OBA中,已知了OB=OC=1,可求出AB的長及∠BOC的度數(shù);進而可根據(jù)弧長公式求出弧BC的長.
試題解析:(1)∵DC⊥OA,OC為半徑且點C在⊙O外端,
∴DC為⊙O的切線;
∵AB為⊙O的切線,∴DC=DB;
在Rt△ACD中,
∵sinA=,BD:AD=1:2,
∴sinA=;∴∠A=30°,
∴tanA=.
(2)連接OB;
∵AB是⊙O的切線,
∴OB⊥AB.
在Rt△AOB中,
∵tanA=,OB=1;
∴AB=
∵∠A=30°,
∴∠O=60°;
∴的長=.
科目:初中數(shù)學 來源: 題型:
【題目】任意寫出一個數(shù)位不含零的三位數(shù),任取三個數(shù)字中的兩個,組合成所有可能的兩位數(shù)(有6個),求出所有這些兩位數(shù)的和,然后將它除以原三位數(shù)的各個數(shù)位上的數(shù)的和.例如,對三位數(shù)223,取其兩個數(shù)字組成所有可能的兩位數(shù):22,23,22,23,32,32.它們的和是154.三位數(shù)223各位數(shù)的和是7,再換幾個數(shù)試一試,你發(fā)現(xiàn)了什么?請寫出你按上面方法的探索過程和所發(fā)現(xiàn)的結果,并運用代數(shù)式的知識說明所發(fā)現(xiàn)的結果的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=(m﹣2)xm2+m-4 +2x﹣1是一個二次函數(shù),求該二次函數(shù)的解析式.
【答案】y=﹣5x2+2x﹣1
【解析】試題分析:根據(jù)二次函數(shù)的定義得到m2+m﹣4=2且m﹣2≠0,由此求得m的值,進而得到該二次函數(shù)的解析式.
試題解析:依題意得:m2+m﹣4=2且m﹣2≠0. 即(m﹣2)(m+3)=0且m﹣2≠0,
解得m=﹣3,
則該二次函數(shù)的解析式為y=﹣5x2+2x﹣1
【題型】解答題
【結束】
21
【題目】如圖,在ABCD中,EF∥AB,F(xiàn)G∥ED,DE:DA=2:5,EF=4,求線段CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
在進行二次根式的化簡與運算時,我們有時會碰上如樣的式子,其實我們還可以將其進一步化簡:
(1)···(一)
(2)···(二)
(3)···(三)
以上這種化簡的步驟叫做分母有理化.
還可以用以下方法化簡:···(四)
請完成下列問題:
(1)請計算 ;
(2)當,則代數(shù)式的值為 ;
(3)請參照(三)式和(四)式用兩種不同的方法化簡
(4)化簡:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課外學習小組在設計一個長方形時鐘鐘面時,欲使長方形的寬為20厘米,時鐘的中心在長方形對角線的交點上,數(shù)字2在長方形的頂點上,數(shù)字3、6、9、12標在所在邊的中點上,如圖所示。
(1)問長方形的長應為多少?
(2)請你在長方框上點出數(shù)字1的位置,并說明確定該位置的方法;
(3)請你在長方框上點出鐘面上其余數(shù)字的位置,并寫出相應的數(shù)字(說明:要畫出必要的、
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校書法興趣小組準備到文具店購買A、B兩種類型的毛筆,文具店的銷售方法是:一次性購買A型毛筆不超過20支時,按零售價銷售;超過20支時,超過部分每支比零售價低0.4元,其余部分仍按零售價銷售.一次性購買B型毛筆不超過15支時,按零售價銷售;超過15支時,超過部分每支比零售價低0.6元,其余的部分仍按零售價銷售.
(1)如果全組共有20名同學,若每人各買1支A型毛筆和2支B型毛筆,共支付145元;若每人各買2支A型毛筆和1支B型毛筆,共支付129元,這家文具店的A、B型毛筆的零售價各是多少?
(2)為了促銷,該文具店對A型毛筆除了原來的銷售方法外,同時又推出了一種新的銷售方法:無論購買多少支,一律按原零售價(即(1)中所求得的A型毛筆的零售價)90%出售.現(xiàn)要購買A型毛筆a支(a>40),在新的銷售方法和原來的銷售方法中,應選擇哪種方法購買花錢較少并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與X軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結論:
①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,
其中正確的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售一種旅游紀念品,第一周的營業(yè)額為200元,第二周該商店對紀念品打8折銷售,結果銷售量增加3件,營業(yè)額增加了40%.
(1)求該商店第二周的營業(yè)額;
(2)求第一周該種紀念品每件的銷售價格.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點B、C為線段AD上的兩點,AB=BC=CD,點E為線段CD的中點,點F為線段AD的三等分點,若BE=14,則線段EF=____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com