【題目】如圖,AB⊙O于點B,OA⊙OC點,過CDC⊥OAABD,且BD:AD=1:2.

(1)求∠A的正切值;

2)若OC=1,求AB的長.

【答案】(1)(2)

【解析】試題分析:(1)易知DB、DC都是⊙O的切線,由切線長定理可得DB=DC,那么結合已知條件則有:DCAD=12;即RtACD中,sinA=,由此可求出∠A的度數(shù),進而可的∠A的正切值.

2)連接OB.在構建的含30°角的RtOBA中,已知了OB=OC=1,可求出AB的長及∠BOC的度數(shù);進而可根據(jù)弧長公式求出弧BC的長.

試題解析:1DCOAOC為半徑且點C在⊙O外端,

DC為⊙O的切線;

AB為⊙O的切線,∴DC=DB

RtACD中,

sinA=,BDAD=12,

sinA=∴∠A=30°,

tanA=

2)連接OB;

AB是⊙O的切線,

OBAB

RtAOB中,

tanA=,OB=1

AB=

∵∠A=30°,

∴∠O=60°

的長=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】任意寫出一個數(shù)位不含零的三位數(shù),任取三個數(shù)字中的兩個,組合成所有可能的兩位數(shù)(有6個),求出所有這些兩位數(shù)的和,然后將它除以原三位數(shù)的各個數(shù)位上的數(shù)的和.例如,對三位數(shù)223,取其兩個數(shù)字組成所有可能的兩位數(shù):22,23,2223,32,32.它們的和是154.三位數(shù)223各位數(shù)的和是7再換幾個數(shù)試一試,你發(fā)現(xiàn)了什么?請寫出你按上面方法的探索過程和所發(fā)現(xiàn)的結果,并運用代數(shù)式的知識說明所發(fā)現(xiàn)的結果的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=m﹣2xm2+m-4 +2x﹣1是一個二次函數(shù),求該二次函數(shù)的解析式.

【答案】y=﹣5x2+2x﹣1

【解析】試題分析:根據(jù)二次函數(shù)的定義得到m2+m﹣4=2m﹣2≠0,由此求得m的值,進而得到該二次函數(shù)的解析式.

試題解析:依題意得:m2+m﹣4=2m﹣2≠0即(m﹣2)(m+3=0m﹣2≠0,

解得m=﹣3,

則該二次函數(shù)的解析式為y=﹣5x2+2x﹣1

型】解答
束】
21

【題目】如圖,在ABCD中,EF∥AB,F(xiàn)G∥ED,DE:DA=2:5,EF=4,求線段CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

在進行二次根式的化簡與運算時,我們有時會碰上如樣的式子,其實我們還可以將其進一步化簡:

1···()

2···()

3···()

以上這種化簡的步驟叫做分母有理化.

還可以用以下方法化簡:···()

請完成下列問題:

1)請計算    ;

2)當,則代數(shù)式的值為    

3)請參照()式和()式用兩種不同的方法化簡

4)化簡:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課外學習小組在設計一個長方形時鐘鐘面時,欲使長方形的寬為20厘米,時鐘的中心在長方形對角線的交點上,數(shù)字2在長方形的頂點上,數(shù)字3、6、912標在所在邊的中點上,如圖所示。

(1)問長方形的長應為多少?

(2)請你在長方框上點出數(shù)字1的位置,并說明確定該位置的方法;

(3)請你在長方框上點出鐘面上其余數(shù)字的位置,并寫出相應的數(shù)字(說明:要畫出必要的、

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校書法興趣小組準備到文具店購買A、B兩種類型的毛筆,文具店的銷售方法是:一次性購買A型毛筆不超過20支時,按零售價銷售;超過20支時,超過部分每支比零售價低0.4元,其余部分仍按零售價銷售.一次性購買B型毛筆不超過15支時,按零售價銷售;超過15支時,超過部分每支比零售價低0.6元,其余的部分仍按零售價銷售.

(1)如果全組共有20名同學,若每人各買1支A型毛筆和2B型毛筆,共支付145元;若每人各買2A型毛筆和1B型毛筆,共支付129元,這家文具店的A、B型毛筆的零售價各是多少?

(2)為了促銷,該文具店對A型毛筆除了原來的銷售方法外,同時又推出了一種新的銷售方法:無論購買多少支,一律按原零售價(即(1)中所求得的A型毛筆的零售價)90%出售.現(xiàn)要購買A型毛筆a支(a>40),在新的銷售方法和原來的銷售方法中,應選擇哪種方法購買花錢較少并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與X軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結論:

①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,

其中正確的有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售一種旅游紀念品,第一周的營業(yè)額為200元,第二周該商店對紀念品打8折銷售,結果銷售量增加3件,營業(yè)額增加了40%

1)求該商店第二周的營業(yè)額;

2)求第一周該種紀念品每件的銷售價格.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點BC為線段AD上的兩點,AB=BC=CD,點E為線段CD的中點,點F為線段AD的三等分點,若BE=14,則線段EF=____________

查看答案和解析>>

同步練習冊答案