【題目】如下圖所示,在△ABC中,∠ACB=90°,AC=BC,BECE于點E,ADCE于點D.DE=6cm,AD=9cm,則BE的長是(

A. 6cm B. 1.5cm C. 3cm D. 4.5cm

【答案】C

【解析】

本題可通過全等三角形來求BE的長.△BEC和△CDA中,已知了一組直角,∠CBE和∠ACD同為∠BCE的余角,AC=BC,可據(jù)此判定兩三角形全等;那么可得出的條件為CE=AD,BE=CD,因此只需求出CD的長即可.而CD的長可根據(jù)CEAD的長和DE的長得出,由此可得解.

解:∵∠ACB=90°,BE⊥CE,

∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;

∴∠ACD=∠CBE,又AC=BC,

∴△ACD≌△CBE;

∴EC=AD,BE=DC;

∵DE=6cm,AD=9cm,則BE的長是3cm.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) )與反比例函數(shù) )的圖象交于點 ,

(1)求這兩個函數(shù)的表達(dá)式;
(2)在 軸上是否存在點 ,使 為等腰三角形?若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知在△ABC中,∠C=90°,AC=5,AB=13.點D在邊AC上,且點D到邊AB和邊BC的距離相等.

(1)用直尺圓規(guī)作出點D(不寫作法,保留作圖痕跡,在圖上標(biāo)注清楚點D);

(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前期,某花店購進(jìn)康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍,求降價后每枝玫瑰的售價是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的條件是(

A. B=C,BD=DC B. ADB=ADC,BD=DC

C. B=C,BAD=CAD D. BD=DC,AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)全等三角形的判定方法以后,我們知道已知兩邊和一角分別相等的兩個三角形不一定全等,但下列兩種情形還是成立的.

(1)第一情形(如圖1)在△ABC和△DEF中,∠C=F=90°,AC=DF,AB=DE,則根據(jù)__________,得出△ABC≌△DEF;

(2)第二情形(如圖2)在△ABC和△DEF中,∠C=F(C和∠F均為鈍角),AC=DF,AB=DE,求證:△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖以正方形ABCDB點為坐標(biāo)原點.BC所在直線為x軸,BA所在直線為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長為6,順次連接OA、OBOC、OD的中點A1、B1、C1、D1,得到正方形A1B1C1D1,再順次連接OA1OB1、OC1OD1的中點得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點的坐標(biāo)為(xnyn),則xn+yn=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD,OE⊥AB,過點O畫直線MN⊥CD. 若點F是直線MN上任意一點(O除外),且∠AOC=34°.求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡再求值:(x+2﹣ )÷( + ),其中x是不等式組 的整數(shù)解.

查看答案和解析>>

同步練習(xí)冊答案