【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達式;
(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.
【答案】(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.
【解析】
(1)待定系數(shù)法求解可得;
(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.
(1)由拋物線過點A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),
將點C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點D坐標為(0,-2),
設(shè)直線BD解析式為y=kx+b,
將B(4,0)、D(0,-2)代入,得:
,解得:,
∴直線BD解析式為y=x-2,
∵QM⊥x軸,P(m,0),
∴Q(m,--m2+m+2)、M(m,m-2),
則QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴當-m2+m+4=時,四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
即m=3時,四邊形DMQF是平行四邊形;
(3)如圖所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下兩種情況:
①當∠DOB=∠MBQ=90°時,△DOB∽△MBQ,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
當m=4時,點P、Q、M均與點B重合,不能構(gòu)成三角形,舍去,
∴m=3,點Q的坐標為(3,2);
②當∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,
此時m=-1,點Q的坐標為(-1,0);
綜上,點Q的坐標為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.
科目:初中數(shù)學 來源: 題型:
【題目】甲,乙兩人同時各接受了600個零件的加工任務(wù),甲比乙每分鐘加工的數(shù)量多,兩人同時開始加工,加工過程中其中一人因故障停止加工幾分鐘后又繼續(xù)按原速加工,直到他們完成任務(wù),如圖表示甲比乙多加工的零件數(shù)量y(個)與加工時間x(分)之間的函數(shù)關(guān)系,觀察圖象解決下列問題:
(1)點B的坐標是_____,B點表示的實際意義是_____;
(2)求線段BC對應(yīng)的函數(shù)關(guān)系式和D點坐標;
(3)乙在加工的過程中,多少分鐘時比甲少加工100個零件?
(4)為了使乙能與甲同時完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每分鐘能加工3個零件,并把丙加工的零件數(shù)記在乙的名下,問丙應(yīng)在第多少分鐘時開始幫助乙?并在圖中用虛線畫出丙幫助后y與x之間的函數(shù)關(guān)系的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:如圖1,在△ABC中,點D是BC的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①BE、CF與EF之間的關(guān)系為:BE+CF EF;(填“>”、“=”或“<”)
②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明.
問題解決:如圖2,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D為頂點作∠EDF=65°,∠EDF的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,直線l過點C.
(1)當AC=BC時,如圖1,分別過點A和B作AD⊥直線l于點D,BE⊥直線l于點 E.△ACD與△CBE是否全等,并說明理由;
(2)當AC=9cm,BC=6cm時,如圖2,點B與點F關(guān)于直線l對稱,連接BF、CF,點M在AC上,點N是CF上一點,分別過點M、N作MD⊥直線l于點D,NE⊥直線l于點E,點M從A點出發(fā),以每秒1cm的速度沿A→C路徑運動,終點為C,點N從點F出發(fā),以每秒3cm的速度沿F→C→B→C→F路徑運動,終點為F,點M、N同時開始運動,各自達到相應(yīng)的終點時停止運動,設(shè)運動時間為t秒.
①當△CMN為等腰直角三角形時,求t的值;
②當△MDC與△CEN全等時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地2015年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2017年在2015年的基礎(chǔ)上增加投入資金1600萬元.
(1)從2015年到2017年,該地投入異地安置資金的年平均增長率為多少?
(2)在2017年異地安置的具體實施中,該地計劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天獎勵5元,按租房400天計算,求2017年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知點D,E,F分別為BC,AD,AE的中點,且S△ABC=4cm2,則陰影部分面積S=( 。cm2.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AC,現(xiàn)添加以下哪個條件不能判定△ABE≌△ACD( )
A.∠B=∠CB.AD=AEC.BD=CED.BE=CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com