【題目】已知拋物線C1:y=x2﹣(2m+4)x+m2﹣10的頂點(diǎn)A到y軸的距離為3,與x軸交于C、D兩點(diǎn).
(1)求頂點(diǎn)A的坐標(biāo);
(2)若點(diǎn)B在拋物線C1上,且,求點(diǎn)B的坐標(biāo).
【答案】
【1】 (1)(3,-18)
【2】 (2)
【解析】
(1)把拋物線一般表達(dá)式寫成頂點(diǎn)式,知道頂點(diǎn)A到y軸的距離,進(jìn)而求出m的值,寫出拋物線頂點(diǎn)式表達(dá)式,求出坐標(biāo).(2)由拋物線C1的解析式為y=(x-3)2-18,解得C、D兩點(diǎn)坐標(biāo),求出CD的值,由B點(diǎn)在拋物線C1上,S△BCD=6,求出B點(diǎn)縱坐標(biāo),把縱坐標(biāo)代入拋物線解出橫坐標(biāo).
解:(1)y=x2-(2m+4)x+m2-10
=[x-(m+2)]2+m2-10-(m+2)2
=[x-(m+2)]2-4m-14
∴拋物線頂點(diǎn)A的坐標(biāo)為(m+2,-4m-14)
由于頂點(diǎn)A到y軸的距離為3,
∴|m+2|=3
∴m=1或m=-5
∵拋物線與x軸交于C、D兩點(diǎn),
∴m=-5舍去.
∴m=1,
∴拋物線頂點(diǎn)A的坐標(biāo)為(3,-18).
(2)∵拋物線C1的解析式為y=(x-3)2-18,
∴拋物線C1與x軸交C、D兩點(diǎn)的坐標(biāo)為(3+3,0),(3?3,0),
∴CD=6,
∵B點(diǎn)在拋物線C1上,S△BCD=6,設(shè)B(xB,yB),則yB=±2,
把yB=2代入到拋物線C1的解析式為y=(x-3)2-18,
解得xB=2+3或xB=?2+3,
把yB=-2代入到拋物線C1的解析式為y=(x-3)2-18,
解得xB=-1或xB=7,
∴B點(diǎn)坐標(biāo)為(2+3,2),(-2+3,2),(-1,-2),(7,-2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=9,點(diǎn)E在邊AD上,AE=1,過E、D兩點(diǎn)的圓的圓心O在邊AD的上方,直線BO交AD于點(diǎn)F,作DG⊥BO,垂足為G.當(dāng)△ABF與△DFG全等時,⊙O的半徑為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個邊長為4的等邊三角形ABC的高與⊙O的直徑相等,如圖放置,⊙O與BC相切于點(diǎn)C,⊙O與AC相交于點(diǎn)E,
(1)求等邊三角形的高;
(2)求CE的長度;
(3)若將等邊三角形ABC繞點(diǎn)C順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<360°),求α為多少時,等邊三角形的邊所在的直線與圓相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮煨购?/span>,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:
① 4ac<b2;② 方程ax2+bx+c=0的兩個根是;③ 3a+c>0;④ 當(dāng)y>0時,x的取值范圍是-1≤x<3;⑤ 當(dāng)x<0時,y隨x增大而增大;
其中結(jié)論正確有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E,F分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過點(diǎn)A;P是⊙O上的一個動點(diǎn)(不與點(diǎn)A重合),過點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)的“值”定義如下:若點(diǎn)為圓上任意一點(diǎn),線段長度的最大值與最小值之差即為點(diǎn)的“值”,記為.特別的,當(dāng)點(diǎn), 重合時,線段的長度為0.
當(dāng)⊙的半徑為2時:
(1)若點(diǎn), ,則_________, _________;
(2)若在直線上存在點(diǎn),使得,求出點(diǎn)的橫坐標(biāo);
(3)直線與軸, 軸分別交于點(diǎn), .若線段上存在點(diǎn),使得,請你直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A(1,5)和點(diǎn)B(m,1)均在反比例函數(shù)y=圖象上.
(1)求m,k的值;
(2)設(shè)直線AB與x軸交于點(diǎn)C,求△AOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com