【題目】如圖,在△ABC中,AB=AC,點D是BC邊上的中點,DE、DF分別垂直AB、AC于點E和F.
求證:DE=DF.
【答案】證明:
證法一:連接AD.
∵AB=AC,點D是BC邊上的中點
∴AD平分∠BAC(三線合一性質),
∵DE、DF分別垂直AB、AC于點E和F.
∴DE=DF(角平分線上的點到角兩邊的距離相等).
證法二:在△ABC中,
∵AB=AC
∴∠B=∠C(等邊對等角)
∵點D是BC邊上的中點
∴BD=DC
∵DE、DF分別垂直AB、AC于點E和F
∴∠BED=∠CFD=90°
在△BED和△CFD中
∵ ,
∴△BED≌△CFD(AAS),
∴DE=DF(全等三角形的對應邊相等).
【解析】D是BC的中點,那么AD就是等腰三角形ABC底邊上的中線,根據(jù)等腰三角形三線合一的特性,可知道AD也是∠BAC的角平分線,根據(jù)角平分線的點到角兩邊的距離相等,那么DE=DF.
【考點精析】掌握等腰三角形的性質是解答本題的根本,需要知道等腰三角形的兩個底角相等(簡稱:等邊對等角).
科目:初中數(shù)學 來源: 題型:
【題目】有四張正面分別標有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機地摸取一張,將卡片上的數(shù)字記為n.
(1)請畫出樹狀圖并寫出(m,n)所有可能的結果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第二、三、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2008年9月27日,神舟七號航天員翟志剛完成中國歷史上第一次太空行走,他相對地球行走了5100000米路程,用科學記數(shù)法表示為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com