【題目】(2016浙江省舟山市第19題)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)
【答案】1.9米
【解析】
試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.
試題解析:∵∠BDC=90°,BC=10,sinB=, ∴CD=BCsinB=10×0.59=5.9,
∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°, ∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,
∴在Rt△ACD中,tan∠ACD=, ∴AD=CDtan∠ACD=5.9×0.32=1.888≈1.9(米),
則改建后南屋面邊沿增加部分AD的長約為1.9米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB.
(1)用尺規(guī)作圖的方法作出線段AB的垂直平分線l (保留作圖痕跡,不要求寫出作法);
(2)在(1)中所作的直線l上任意取兩點M,N(不重合).連結(jié)AM,AN,BM,BN.
求證:∠MAN=∠MBN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是1個直角三角形和2個小正方形,直角三角形的三條邊長分別是a、b、c,其中a、b是直角邊.正方形的邊長分別是a、b.
(1)將4個完全一樣的直角三角形和2個小正方形構(gòu)成一個大正方形(如圖②).用兩種不同的方法列代數(shù)式表示圖②中的大正方形面積:
方法一: ;方法二: ;
(2)觀察圖②,試寫出, , , 這四個代數(shù)式之間的等量關(guān)系: ;
(3)請利用(2)中等量關(guān)系解決問題:已知圖①中一個三角形面積是6,圖②的大正方形面積是49,求的值;
(4)求9972+2×3×997+32的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西省賀州市第22題)如圖,是某市一座人行天橋的示意圖,天橋離地面的高BC是10米,坡面10米處有一建筑物HQ,為了方便使行人推車過天橋,市政府部門決定降低坡度,使新坡面DC的傾斜角∠BDC=30°,若新坡面下D處與建筑物之間需留下至少3米寬的人行道,問該建筑物是否需要拆除(計算最后結(jié)果保留一位小數(shù)).(參考數(shù)據(jù): =1.414, =1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com