精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC內接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長線相交于點P,若PA= cm,求AC的長.

【答案】解:∵AB是⊙O直徑, ∴∠ACB=90°,
∵∠BAC=2∠B,
∴∠B=30°,∠BAC=60°,
∵OA=OC,
∴△AOC是等邊三角形,
∴∠AOC=60°,AC=OA,
∵PA是⊙O切線,
∴∠OAP=90°,
在Rt△OAP中,PA=6 cm,∠AOP=60°,
∴OA= = =6cm,
∴AC=OA=6cm
【解析】根據直徑求出∠ACB=90°,求出∠B=30°,∠BAC=60°,得出△AOC是等邊三角形,得出∠AOC=60°,OA=AC, 在Rt△OAP中,求出OA,即可求出答案.
【考點精析】根據題目的已知條件,利用切線的性質定理的相關知識可以得到問題的答案,需要掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我市某中學藝術節(jié)期間,向學校學生征集書畫作品.九年級美術李老師從全年級14個班中隨機抽取了A、B、C、D 4個班,對征集到的作品的數量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.
(1)李老師采取的調查方式是(填“普查”或“抽樣調查”),李老師所調查的4個班征集到作品共件,其中B班征集到作品 , 請把圖2補充完整.
(2)如果全年級參展作品中有4件獲得一等獎,其中有2名作者是男生,2名作者是女生.現在要抽兩人去參加學?偨Y表彰座談會,求恰好抽中一男一女的概率.(要求用樹狀圖或列表法寫出分析過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB′F.設點E、F、G運動的時間為t(單位:s).

(1)當t=s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】
(1)計算: ;
(2)先化簡,再求代數式的值: ,其中m=1.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O1 , ⊙O2的圓心在直線l上,⊙O1的半徑為2cm,⊙O2的半徑為3cm.O1O2=8cm,⊙O1以1cm/s的速度沿直線l向右運動,7s后停止運動.在此過程中,⊙O1和⊙O2沒有出現的位置關系是(
A.外切
B.相交
C.內切
D.內含

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小麗駕車從甲地到乙地.設她出發(fā)第xmin時的速度為ykm/h,圖中的折線表示她在整個駕車過程中y與x之間的函數關系.
(1)小麗駕車的最高速度是km/h;
(2)當20≤x≤30時,求y與x之間的函數關系式,并求出小麗出發(fā)第22min時的速度;
(3)如果汽車每行駛100km耗油10L,那么小麗駕車從甲地到乙地共耗油多少升?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,AC=2
(1)利用尺規(guī)作線段AC的垂直平分線DE,垂足為E,交AB于點D,(保留作圖痕跡,不寫作法)
(2)若△ADE的周長為a,先化簡T=(a+1)2﹣a(a﹣1),再求T的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】己知拋物線y=x2+2mx﹣n與x軸沒有交點,則m+n的取值范圍是

查看答案和解析>>

同步練習冊答案