【題目】如圖,在梯形ABCD中, 利用面積法證明勾股定理.
【答案】證明見(jiàn)解析.
【解析】試題分析:
用以下兩種方法分別計(jì)算梯形ABCD的面積,再利用同一個(gè)幾何圖形的面積相等得到等式變形即可證明得到“勾股定理”;
方法(1):S梯形= (上底+下底) 高;方法(2):S梯形=S△ABE+S△ADC+S△BCE;
試題解析:
由題意可得:在△ADE和△ECB中, ,
∴△ADE≌△ECB,
∴∠AED=∠EBC,
∵EBC+∠BEC=90°,
∴∠AED+∠BEC=90°,
∴∠AEB=90°.
∴(1):S梯形= (上底+下底) 高=;
(2):S梯形=S△ABE+S△ADC+S△BCE=;
∴即: ,
∴.
即:在直角三角形中,兩直角邊的平方和等于斜邊的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,對(duì)稱(chēng)軸的條數(shù)最多的圖形是( )
A. 線(xiàn)段 B. 角 C. 等腰三角形 D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(﹣,0)的兩條直線(xiàn)分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根
(1)求線(xiàn)段BC的長(zhǎng)度;
(2)試問(wèn):直線(xiàn)AC與直線(xiàn)AB是否垂直?請(qǐng)說(shuō)明理由;
(3)若點(diǎn)D在直線(xiàn)AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(4)在(3)的條件下,直線(xiàn)BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只不透明的袋子中裝有白、紅、黑三種不同的球,其中白球有3個(gè),紅球有8個(gè),黑球有m個(gè),這些球除顏色外完全相同.若從袋子中任意取一個(gè)球,摸到黑球的可能性最小,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,E是DB延長(zhǎng)線(xiàn)上一點(diǎn),且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)若∠AEB=2∠EAB,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.(a2)3=a5
B.(ab)2=ab2
C.a6÷a3=a2
D.a2a3=a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))與y軸交于點(diǎn)C(0,-3),對(duì)稱(chēng)軸是直線(xiàn)x=1,直線(xiàn)BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)D,點(diǎn)E為y軸上一動(dòng)點(diǎn),CE的垂直平分線(xiàn)交拋物線(xiàn)于P,Q兩點(diǎn)(點(diǎn)P在第三象限)
(1)求拋物線(xiàn)的函數(shù)表達(dá)式和直線(xiàn)BC的函數(shù)表達(dá)式;
(2)當(dāng)△CDE是直角三角形,且∠CDE=90° 時(shí),求出點(diǎn)P的坐標(biāo);
(3)當(dāng)△PBC的面積為時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線(xiàn)交BC于點(diǎn)M,則DM的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com