【題目】已知分式

1)當(dāng)____時,分式的值等于零;

2)當(dāng)____時,分式無意義;

3)當(dāng)______時分式的值是正數(shù);

4)當(dāng)____時,分式的值是負(fù)數(shù).

【答案】

【解析】1)根據(jù)分式值為零的條件可得a2=0,且1-2a≠0,再解即可.

2)根據(jù)分式無意義的條件可得1-2a=0,再解方程即可;

3)根據(jù)分式值為正可得分子分母為同號,因此1-2a>0,且a≠0,再解不等式即可;

4)根據(jù)分式值為負(fù)可得分子分母為異號,因此1-2a<0,且a≠0,再解不等式即可.

解:(1)由題意得:a2=0,且12a≠0,

解得:a=0

故答案為:a=0;

(2)由題意得:12a=0,

解得:a=,

故答案為:a=;

(3)由題意得:12a>0,且a≠0

解得:a<a≠0,

故答案為:a<a≠0.

(4)由題意得:12a<0,且a≠0,

解得:a>,

故答案為:a>.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)若,則

(2)如圖,CBOA,B=A=108°,E、FCB上,且滿足∠FOC=AOC,OE平分∠BOF,若平行移動AC,當(dāng)∠OCA= 時?梢允埂OEB=OCA。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對非負(fù)實數(shù)x“四舍五入到個位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時,若,則<x>n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:

①<1.493>=1;

②<2x>=2<x>

,則實數(shù)x的取值范圍是

當(dāng)x≥0,m為非負(fù)整數(shù)時,有;

。

其中,正確的結(jié)論有  (填寫所有正確的序號)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點在第一象限,過點Ax軸作垂線,垂足為點B,連接OA,點MO出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負(fù)方向運動,點M與點N同時出發(fā),設(shè)點M的運動時間為t秒,連接AM,ANMN

a的值;

當(dāng)時,

請?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說明理由;

試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由.

當(dāng)時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),四邊形OECB的頂點坐標(biāo)分別是:B2,5),C8,5),E100),點Px,0)是線段OE上一點,設(shè)四邊形BPEC的面積為S

1)過點CCDx軸于點E,則CD= , 用含x的代數(shù)式表示PE= .

2)求Sx的函數(shù)關(guān)系.

3)當(dāng)S30時,直接寫出線段PEPB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC和∠ACB的角平分線BE、CF相交于點I,

(1)∠BIC=120°,求∠A的度數(shù)

(2)當(dāng)∠BIC=135°,則∠A= 。

(3)請你用數(shù)學(xué)表達(dá)式歸納出∠BIC與∠A的關(guān)系式,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,G是AD延長線上的一點,且DG=AD,動點M從A點出發(fā),以每秒1個單位的速度沿著A→C→G的路線向G點勻速運動(M不與A,G重合),設(shè)運動時間為t秒,連接BM并延長AG于N.

(1)是否存在點M,使△ABM為等腰三角形?若存在,分析點M的位置;若不存在,請說明理由;
(2)當(dāng)點N在AD邊上時,若BN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點M分別作AB,AD的垂線,垂足分別為E,F(xiàn),矩形AEMF與△ACG重疊部分的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

同步練習(xí)冊答案