【題目】如圖,在正方形ABCD中,O是對(duì)角線AC與BD的交點(diǎn),M是BC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B,C重合),CN⊥DM,CN與AB交于點(diǎn)N,連接OM,ON,MN.下列五個(gè)結(jié)論:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,則S△OMN的最小值是 ,其中正確結(jié)論的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
【答案】D
【解析】解:∵正方形ABCD中,CD=BC,∠BCD=90°, ∴∠BCN+∠DCN=90°,
又∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
又∵∠CBN=∠DCM=90°,
∴△CNB≌△DMC(ASA),故①正確;
根據(jù)△CNB≌△DMC,可得CM=BN,
又∵∠OCM=∠OBN=45°,OC=OB,
∴△OCM≌△OBN(SAS),
∴OM=ON,∠COM=∠BON,
∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,
又∵DO=CO,
∴△CON≌△DOM(SAS),故②正確;
∵∠BON+∠BOM=∠COM+∠BOM=90°,
∴∠MON=90°,即△MON是等腰直角三角形,
又∵△AOD是等腰直角三角形,
∴△OMN∽△OAD,故③正確;
∵AB=BC,CM=BN,
∴BM=AN,
又∵Rt△BMN中,BM2+BN2=MN2 ,
∴AN2+CM2=MN2 , 故④正確;
∵△OCM≌△OBN,
∴四邊形BMON的面積=△BOC的面積=1,即四邊形BMON的面積是定值1,
∴當(dāng)△MNB的面積最大時(shí),△MNO的面積最小,
設(shè)BN=x=CM,則BM=2﹣x,
∴△MNB的面積= x(2﹣x)=﹣ x2+x,
∴當(dāng)x=1時(shí),△MNB的面積有最大值 ,
此時(shí)S△OMN的最小值是1﹣ = ,故⑤正確;
綜上所述,正確結(jié)論的個(gè)數(shù)是5個(gè),
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)BP到點(diǎn)C,使PC=PB,D是AC的中點(diǎn),連接PD、PO.
(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當(dāng)∠PBA的度數(shù)為時(shí),四邊形BPDO是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩列火車(chē)分別從A,B兩城同時(shí)相向勻速駛出,甲車(chē)開(kāi)往終點(diǎn)B城,乙車(chē)開(kāi)往終點(diǎn)A城,乙車(chē)比甲車(chē)早到達(dá)終點(diǎn);如圖所示,是兩車(chē)相距的路程d(千米)與行駛時(shí)間t(小時(shí))的函數(shù)的圖象.
(1)經(jīng)過(guò)小時(shí)兩車(chē)相遇;
(2)A,B兩城相距千米路程;
(3)分別求出甲、乙兩車(chē)的速度;
(4)分別求出甲車(chē)距A城的路程s甲、乙車(chē)距A城的路程s乙與t的函數(shù)關(guān)系式;(不必寫(xiě)出t的范圍)
(5)當(dāng)兩車(chē)相距200千米路程時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)那天,小賢回家看到桌上有一盤(pán)粽子,其中有豆沙粽、肉粽各1個(gè),蜜棗粽2個(gè),這些粽子除餡外無(wú)其他差別.
(1)小賢隨機(jī)地從盤(pán)中取出一個(gè)粽子,取出的是肉粽的概率是多少?
(2)小賢隨機(jī)地從盤(pán)中取出兩個(gè)粽子,試用畫(huà)樹(shù)狀圖或列表的方法表示所有可能的結(jié)果,并求出小賢取出的兩個(gè)都是蜜棗粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a>0).
(1)當(dāng)a=1時(shí),求拋物線與x軸的交點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸;
(2)①試說(shuō)明無(wú)論a為何值,拋物線C1一定經(jīng)過(guò)兩個(gè)定點(diǎn),并求出這兩個(gè)定點(diǎn)的坐標(biāo);②將拋物線C1沿這兩個(gè)定點(diǎn)所在直線翻折,得到拋物線C2 , 直接寫(xiě)出C2的表達(dá)式;
(3)若(2)中拋物線C2的頂點(diǎn)到x軸的距離為2,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動(dòng)點(diǎn)P滿足S△PAB= S矩形ABCD , 則點(diǎn)P到A、B兩點(diǎn)距離之和PA+PB的最小值為( )
A.
B.
C.5
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商店只有雪碧、可樂(lè)、果汁、奶汁四種飲料,某同學(xué)去該店購(gòu)買(mǎi)飲料,每種飲料被選中的可能性相同.
(1)若他去買(mǎi)一瓶飲料,則他買(mǎi)到奶汁的概率是多少?
(2)若他兩次去買(mǎi)飲料,每次買(mǎi)一瓶,且兩次所買(mǎi)飲料品種不同,請(qǐng)用樹(shù)狀圖或列表法求出他恰好買(mǎi)到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,一個(gè)電子蜘蛛從點(diǎn)A出發(fā)勻速爬行,它先沿線段AB爬到點(diǎn)B,再沿半圓經(jīng)過(guò)點(diǎn)M爬到點(diǎn)C.如果準(zhǔn)備在M、N、P、Q四點(diǎn)中選定一點(diǎn)安裝一臺(tái)記錄儀,記錄電子蜘蛛爬行的全過(guò)程.設(shè)電子蜘蛛爬行的時(shí)間為x,電子蜘蛛與記錄儀之間的距離為y,表示y與x函數(shù)關(guān)系的圖象如圖2所示,那么記錄儀可能位于圖1中的( )
A.點(diǎn)M
B.點(diǎn)N
C.點(diǎn)P
D.點(diǎn)Q
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com