【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-2ax-3a (a<0)經(jīng)過點(diǎn)A(-1,0),將點(diǎn)B(0,4)向右平移5個(gè)單位長度,得到點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求拋物線的對稱軸;
(3)若拋物線與線段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖像,求a的取值范圍.
【答案】(1)C(5,4);(2)x=1; (3) 或
【解析】
(1)根據(jù)坐標(biāo)平移的特點(diǎn)是左減右加、上加下減可以求得點(diǎn)C的坐標(biāo);
(2)根據(jù)拋物線C1:y=ax2﹣2ax﹣3a(a≠0)可以求得該拋物線的對稱軸;
(3)分三種情況討論:①當(dāng)拋物線頂點(diǎn)在線段BC上時(shí),②當(dāng)拋物線與直線BC的左交點(diǎn)在B的左邊,右交點(diǎn)在線段BC上時(shí),③當(dāng)拋物線與直線BC的左交點(diǎn)在線段BC上,右交點(diǎn)在線段BC的延長線上時(shí).
(1)∵點(diǎn)B(0,4)向右平移5個(gè)單位長度,得到點(diǎn)C,
∴點(diǎn)C的坐標(biāo)為(5,4);
(2)∵拋物線C1:y=ax2﹣2ax﹣3a,
∴對稱軸是直線x=﹣=1;
(3)∵y=ax2﹣2ax﹣3a=a(x-1)2﹣4a,
∴分三種情況討論:
①當(dāng)拋物線頂點(diǎn)在線段BC上時(shí),拋物線與線段BC只有一個(gè)交點(diǎn),此時(shí)﹣4a=4,
解得:a=-1;
②當(dāng)拋物線與直線BC的左交點(diǎn)在B的左邊,右交點(diǎn)在線段BC上時(shí),拋物線與線段BC只有一個(gè)交點(diǎn),此時(shí)拋物線與y軸的交點(diǎn)在點(diǎn)B上方,
∴-3a>4,
解得:a<.
③當(dāng)拋物線與直線BC的左交點(diǎn)在線段BC上,右交點(diǎn)在線段BC的延長線上時(shí),拋物線與線段BC只有一個(gè)交點(diǎn).
∵拋物線開口向下,此時(shí)拋物線與x軸的右交點(diǎn)的橫坐標(biāo)一定大于5,這與拋物線一定過(-1,0)和(3,0)矛盾,此種情況不成立.
綜上所述:a的取值范圍是或a=-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E在BC邊上,點(diǎn)F在DC的延長線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)C′),連接CC′,若∠CC′B′=33°,則∠B的大小是( )
A. 33° B. 45° C. 57° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形為正方形,已知點(diǎn)、,點(diǎn)、在第二象限內(nèi).
(1)點(diǎn)的坐標(biāo)___________;
(2)將正方形以每秒個(gè)單位的速度沿軸向右平移秒,若存在某一時(shí)刻,使在第一象限內(nèi)點(diǎn)、兩點(diǎn)的對應(yīng)點(diǎn)、正好落在某反比例函數(shù)的圖象上,請求出此時(shí)的值以及這個(gè)反比例函數(shù)的解析式;
(3)在(2)的情況下,問是否存在軸上的點(diǎn)和反比例函數(shù)圖象上的點(diǎn),使得以、、、四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出符合題意的點(diǎn)、的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮煨购?/span>,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘貨輪由西向東航行,在處測得燈塔在它的北偏東60°方向,繼續(xù)航行到達(dá)處,測得燈塔在正南方向10海里的處是港口,點(diǎn)、、在一條直線上,則這艘貨輪由處到處航行的路程為__________海里(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對70周年國慶閱兵儀式直播的收看情況,某校對部分學(xué)生進(jìn)行了一次調(diào)査,調(diào)査直播收看情況分三種:A.全程收看直播;B.觀看了一部分直播;C.沒有觀看.學(xué)校學(xué)生會(huì)將調(diào)査數(shù)據(jù)進(jìn)行了整理,并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)相關(guān)信息,解答下列問題:
(1)本次活動(dòng)共調(diào)查了______名學(xué)生;
(2)圖二中區(qū)域的圓心角的度數(shù)為______;
(3)補(bǔ)全圖;
(4)若該校學(xué)生共有3000名,請估計(jì)該校學(xué)生全程收看直播的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊矩形硬紙板,長50cm,寬30cm.在其四角各剪去一個(gè)同樣的正方形,然后將四周突出部分折起,可制成一個(gè)無蓋長方體盒子.當(dāng)剪去正方形的邊長取何值時(shí),所得長方體盒子的側(cè)面積為600cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】非洲豬瘟疫情發(fā)生以來,豬肉市場供應(yīng)階段性偏緊和豬價(jià)大幅波動(dòng)時(shí)有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進(jìn)轉(zhuǎn)型升級(jí),增強(qiáng)豬肉供應(yīng)保障能力,國務(wù)院辦公廳于2019年9月印發(fā)了《關(guān)于穩(wěn)定生豬生產(chǎn)促進(jìn)轉(zhuǎn)型升級(jí)的意見》,某生豬飼養(yǎng)場積極響應(yīng)國家號(hào)召,努力提高生產(chǎn)經(jīng)營管理水平,穩(wěn)步擴(kuò)大養(yǎng)殖規(guī)模,增加豬肉供應(yīng)量。該飼養(yǎng)場2019年每月生豬產(chǎn)量y(噸)與月份x(,且x為整數(shù))之間的函數(shù)關(guān)系如圖所示.
(1)請直接寫出當(dāng)(x為整數(shù))和(x為整數(shù))時(shí),y與x的函數(shù)關(guān)系式;
(2)若該飼養(yǎng)場生豬利潤P(萬元/噸)與月份x(,且x為整數(shù))滿足關(guān)系式:,請問:該飼養(yǎng)場哪個(gè)月的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com