【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式kx+b>的解集;
(3)過(guò)點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.
【答案】(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;
(2)﹣3<x<0或x>2;
(3)5.
【解析】
(1)根據(jù)點(diǎn)A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點(diǎn)B坐標(biāo)代入反比例函數(shù)解析式,求出n的值,進(jìn)而求出一次函數(shù)解析式
(2)根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)及圖象特點(diǎn),即可求出反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍
(3)由點(diǎn)A和點(diǎn)B的坐標(biāo)求得三角形以BC 為底的高是10,從而求得三角形ABC 的面積
解:(1)∵點(diǎn)A(2,3)在y=的圖象上,∴m=6,
∴反比例函數(shù)的解析式為:y=,
∴n==﹣2,
∵A(2,3),B(﹣3,﹣2)兩點(diǎn)在y=kx+b上,
∴,
解得:,
∴一次函數(shù)的解析式為:y=x+1;
(2)由圖象可知﹣3<x<0或x>2;
(3)以BC為底,則BC邊上的高為3+2=5,
∴S△ABC=×2×5=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:各類(lèi)方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)A(-3,0),與y軸交于點(diǎn)B(0,4),在第一象限內(nèi)有一點(diǎn)P(m,n),且滿足4m+3n=12.
(1)求二次函數(shù)解析式.
(2)若以點(diǎn)P為圓心的圓與直線AB、x軸相切,求點(diǎn)P的坐標(biāo).
(3)若點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)A′,點(diǎn)C在對(duì)稱(chēng)軸上,且2∠CBA+∠PA′O=90.求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖甲是小張同學(xué)設(shè)計(jì)的帶圖案的花邊作品,該作品由形如圖乙的矩形圖案設(shè)計(jì)拼接面成(不重疊,無(wú)縫隙).圖乙中,點(diǎn)E、F、G、H分別為矩形AB、BC、CD、DA的中點(diǎn),若AB=4,BC=6,則圖乙中陰影部分的面積為
_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一面利用墻,用籬笆圍成的矩形花圃ABCD的面積為Sm2,垂直于墻的AB邊長(zhǎng)為xm.
(1)若墻可利用的最大長(zhǎng)度為8m,籬笆長(zhǎng)為18m,花圃中間用一道籬笆隔成兩個(gè)小矩形.
①求S與x之間的函數(shù)關(guān)系式;
②如何圍矩形花圃ABCD的面積會(huì)最大,并求最大面積.
(2)若墻可利用最大長(zhǎng)度為50m,籬笆長(zhǎng)99m,中間用n道籬笆隔成(n+1)小矩形,當(dāng)這些小矩形都是正方形且x為正整數(shù)時(shí),請(qǐng)直接寫(xiě)出所有滿足條件的x、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為邊上的一點(diǎn),E,F分別是邊,的中點(diǎn),,,的面積分別為S,,,若,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC為平行四邊形,B、C在⊙O上,A在⊙O外,sin∠OCB=.
(1)求證:AB與⊙O相切;
(2)若BC=10cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解今年九年級(jí)學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,在中考考前適應(yīng)性訓(xùn)練測(cè)試后,對(duì)九年級(jí)全體同學(xué)的數(shù)學(xué)成績(jī)作了統(tǒng)計(jì)分析,按照成績(jī)高低分為A、B、C、D四個(gè)等級(jí)并繪制了如圖1和圖2的統(tǒng)計(jì)圖(均不完整),請(qǐng)結(jié)合圖中所給出的信息解答問(wèn)題:
(1)該校九年級(jí)學(xué)生共有 人.
(2)補(bǔ)全條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖.(要求:請(qǐng)將扇形統(tǒng)計(jì)圖的空白部分按比例分成兩部分.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,、是弧(異于、)上兩點(diǎn),是弧上一動(dòng)點(diǎn),的角平分線交于點(diǎn),的平分線交于點(diǎn).當(dāng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),則、兩點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)的比是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com