在Rt△ABC中,∠C=90°,CD⊥AB于點D,若AD=9,BD=4,則AC=   
.

試題分析:根據(jù)題意畫出圖形,先根據(jù)相似三角形的判定定理得出△ACD∽△CBD,再由相似三角形的對應(yīng)邊成比例求出CD的長,根據(jù)勾股定理即可得出AC的長
如圖所示:

∵Rt△ABC中∠C=90°,CD⊥AB,
∴∠A+∠B=90°,∠A+∠ACD=90°,∠B+∠BCD=90°,
∴∠A=∠BCD,
∴△ACD∽△CBD,
∴CD:AD="BD:CD" ,即CD2=AD•BD=9×4=36,解得CD=6,
在Rt△ACD中,
∵AD=9,CD=4,
∴AC===5.
故答案為:5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,AB=AC=4.一動點P從點B出發(fā),沿BC方向以每秒1個單位長度的速度勻速運動,到達點C即停止.在整個運動過程中,過點P作PD⊥BC與Rt△ABC的直角邊相交于點D,延長PD至點Q,使得PD=QD,以PQ為斜邊在PQ左側(cè)作等腰直角三角形PQE.設(shè)運動時間為t秒(t>0).

(1)在整個運動過程中,設(shè)△ABC與△PQE重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及相應(yīng)的自變量t的取值范圍;
(2)當(dāng)點D在線段AB上時,連接AQ、AP,是否存在這樣的t,使得△APQ成為等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由;
(3)當(dāng)t=4秒時,以PQ為斜邊在PQ右側(cè)作等腰直角三角形PQF,將四邊形PEQF繞點P旋轉(zhuǎn),PE與線段AB相交于點M,PF與線段AC相交于點N.試判斷在這一旋轉(zhuǎn)過程中,四邊形PMAN的面積是否發(fā)生變化?若發(fā)生變化,求出四邊形PMAN的面積y與PM的長x之間的函數(shù)關(guān)系式以及相應(yīng)的自變量x的取值范圍;若不發(fā)生變化,求出此定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,在平行四邊形ABCD中,E、F分別是邊BC、CD上的點,且EF∥BD,AE、AF分別交BD于點G和點H,BD=12,EF=8。求:(1)的值。(2)線段GH的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知,請?zhí)砑右粋條件,使,這個條件可以是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把一個三角形分割成幾個小正三角形,有兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正三角形分割成4個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了3個正三角形.
基本分割法2:如圖②,把一個正三角形分割成6個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了5個正三角形.

請你運用上述兩種“基本分割法”,解決下列問題:
(1)把圖③的正三角形分割成9個小正三角形;
(2)把圖④的正三角形分割成10個小正三角形;
(3)把圖⑤的正三角形分割成11個小正三角形;
(4)把圖⑥的正三角形分割成12個小正三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC是一張銳角三角形的硬紙片,AD是邊BC上的高,BC=40 cm,AD=30 cm,從這張硬紙片上剪下一個長HG是寬HE的2倍的矩形EFGH,使它的一邊EF在BC上,頂點G、H分別在AC、AB上,AD與HG的交點為M. 求矩形的長與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平行四邊形ABCD中,F(xiàn)是CD上一點,BF交AD的延長線于G,則圖中的相似三角形對數(shù)共有( )
A.8對;B.6對;C.4對;D.2對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖已知△ABC中,D為邊AC上一點,P為邊AB上一點, ,當(dāng)AP的長度為__________時△ADP和△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在中,,,的平分線交于點,交的延長線于點,,垂足為.若,則△的面積是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案