【題目】如圖,已知中,,,,,動點從點出發(fā),沿著的三條邊逆時針走一圈回到點,速度為2,設(shè)運動時間為秒.
(1) 時,為等腰三角形?
(2)另有一點從點開始,按順時針走一圈回到點,且速度為每秒3cm,若、兩點同時出發(fā),當(dāng)、中有一點到達終點時,另一點也停止運動.當(dāng)為何值時,直線把的周長分成相等的兩部分?
【答案】(1)t=8或6.5;(2)t=2.4或7.2
【解析】
(1)分情況討論:①在邊AB上時,有兩種情況;②在邊AB上時,不能構(gòu)成三角形;③在邊AC上時,不能構(gòu)成三角形;
(2)分情況討論:根據(jù)點P在BC、AB、AC邊上討論,根據(jù)周長平分列方程可得結(jié)論.
(1)①i當(dāng)點P在AB上,如圖,
CA=AP時,AP=8,
則t=16÷2=8s,
①ii當(dāng)點P在AB上,如圖,
AP=CP時,過P作PD⊥AC于D,則AD=CD=AC=4
根據(jù)
∴
∴
∴在Rt△PAC中,AP==5
則t=13÷2=6.5s
故當(dāng)t=8或6.5秒時,△ACP為等腰三角形;
(2)當(dāng)P點在AC上,Q在AB上,PQ是相背運動,根據(jù)平分周長,則PQ運動的距離和是12,
∵直線PQ把△ABC的周長分成相等的兩部分,
∴2t+3t=12,
∴t=2.4;
當(dāng)P點在AB上,Q在AC上,相遇后是剛剛好合計走完一周,再次平分時又合計走了半周,
∵直線PQ把△ABC的周長分成相等的兩部分,
∴2t+3t=36,
∴t=7.2,
∴當(dāng)t=2.4或7.2秒時,直線PQ把△ABC的周長分成相等的兩部分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達標(biāo)(達標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB=AC,AD=AE,BE與CD相交于點P.
(1)求證:PC=PB;
(2)求證:∠CAP=∠BAP;
(3)利用(2)的結(jié)論,用直尺和圓規(guī)作∠MON的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形ABOC中,AC=4,雙曲線y=與矩形兩邊AB、AC分別交于D、E,E為AC邊中點.
(1)求點E的坐標(biāo);
(2)點P是線段OB上的一個動點,是否存在點P,使∠DPC=90°?若存在,求出此時點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的周長是20 cm,以AB,AD為邊向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面積之和為68 cm2,那么矩形ABCD的面積是_______cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是( )
A. 20 B. 25 C. 30 D. 32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8.
(1)求BE的長;
(2)求△ACD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為△ABC外一點,DC與AB交于點O,且∠BDC=∠BAC.
(1)求證:∠ABD=∠ACD;
(2)過點A作AM⊥CD于M,求證:BD+DM=CM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某班數(shù)學(xué)興趣小組利用數(shù)學(xué)知識測量建筑物DEFC的高度.他們從點A出發(fā)沿著坡度為i=1:2.4的斜坡AB步行26米到達點B處,此時測得建筑物頂端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD為水平的地面,則此建筑物的高度CD約為( 。┟祝▍⒖紨(shù)據(jù):≈1.7,tan35°≈0.7)
A. 23.1 B. 21.9 C. 27.5 D. 30
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com