【題目】(1)一種圓環(huán)甲(如圖1),它的外圓直徑是8厘米,環(huán)寬1厘米。
①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為 厘米;
②如果用n個這樣的圓環(huán)相扣并拉緊,長度為 厘米。
(2)另一種圓環(huán)乙,像(1)中圓環(huán)甲那樣相扣并拉緊,
①3個圓環(huán)乙的長度是28cm,5個圓環(huán)乙的長度是44cm,求出圓環(huán)乙的外圓直徑和環(huán)寬;
②現(xiàn)有n(n>2)個圓環(huán)甲和n(n>2)個圓環(huán)乙,將它們像(1)中那樣相扣并拉緊,長度用n的代數(shù)式表示為多少厘米?
【答案】(1) ①14 ② 6n+2(2) 圓環(huán)乙的外圓直徑為12cm,環(huán)寬為2cm②14n+3
【解析】
解:(1)①14 ② 6n+2 ……………4分
(2)①設圓環(huán)乙的外圓直徑為xcm,環(huán)寬為ycm,則根據(jù)題意得:
解之得……………8分
答:圓環(huán)乙的外圓直徑為12cm,環(huán)寬為2cm. ……………9分
② ∵n個圓環(huán)甲的長度=6n+2
∴n個圓環(huán)乙的長度=8n+4
∴n個圓環(huán)甲+n個圓環(huán)乙=6n+2+8n+4-(1+2)="14n+3"
……………12分
(1)由于圓環(huán)的外圓直徑是8厘米,環(huán)寬1厘米,所以內(nèi)圓直徑是6厘米.
①如果把這樣的2個圓環(huán)扣在一起并拉緊,那么長度為2個內(nèi)圓直徑+2個環(huán)寬;
②如果用n個這樣的圓環(huán)相扣并拉緊,那么長度為n個內(nèi)圓直徑+2個環(huán)寬;
(2)①根據(jù)設圓環(huán)乙的外圓直徑為xcm,環(huán)寬為ycm,利用3個圓環(huán)乙的長度是28cm,5個圓環(huán)乙的長度是44cm,分別得出方程即可求出;
②首先假設總共2n個環(huán)相扣,且兩頭的兩個也相扣,即2n個小環(huán)相扣后構成一個大環(huán),則總長為(12+8)n-(2+4)n=14n進而分析即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點O,∠AOB=60°,BD=4,將△ABC沿直線AC翻折后,點B落在點E處,那么S△AED=______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣2x+2與x軸、y軸分別交于A、B兩點,△BAC為等腰直角三角形,且∠BAC=90°.若點C恰好落在函數(shù)y= (x>0)在第一象限內(nèi)的圖象上,則k的值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在AD上,點E在BC上,把這個矩形沿EF折疊后,使點D恰好落在BC邊上的G點處,若矩形面積為4 且∠AFG=60°,GE=2BG,則折痕EF的長為( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D、E、F分在AB、BC、AC上,且DE∥AC,EF∥AB,下面寫出了證明“∠A+∠B+∠C=180°”的過程,請補充完整:
證明:∵DE∥AC,EF∥AB
∴∠1=∠ ,∠3=∠ ,( )
∵AB∥EF(已知)
∴∠2=∠ ( )
∵DE∥AC(已知)
∴∠4=∠ ( )
∴∠2=∠A( )
∵∠1+∠2+∠3=180°(平角定義)
∴∠A+∠B+∠C=180°(等量代換)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;
(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示-5,點B表示10.動點P從點A出發(fā),沿數(shù)軸正方向以每秒1個單位的速度勻速運動;同時,動點Q從點B出發(fā),沿數(shù)軸負方向以每秒2個單位的速度勻速運動.設運動時間為t秒.
(1)當t為 秒時,P,Q兩點相遇,求出相遇點所對應的數(shù);
(2)當t為何值時,P,Q兩點的距離為3個單位長度,并求出此時點P對應的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點).有下列結論: ①當x=3時,y=0;
②3a+b>0;
③﹣1≤a≤﹣ ;
④ ≤n≤4.
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com