【題目】在平面直角坐標(biāo)系中,分別過點(diǎn),作軸的垂線和 ,探究直線和與雙曲線 的關(guān)系,下列結(jié)論中錯(cuò)誤的是
A.兩直線中總有一條與雙曲線相交
B.當(dāng)=1時(shí),兩條直線與雙曲線的交點(diǎn)到原點(diǎn)的距離相等
C.當(dāng) 時(shí),兩條直線與雙曲線的交點(diǎn)在軸兩側(cè)
D.當(dāng)兩直線與雙曲線都有交點(diǎn)時(shí),這兩交點(diǎn)的最短距離是2
【答案】D
【解析】
根據(jù)題意給定m特定值、非特定值分別進(jìn)行討論即可得.
當(dāng)=0時(shí),與雙曲線有交點(diǎn),當(dāng)=-2時(shí),與雙曲線有交點(diǎn),
當(dāng)時(shí),和雙曲線都有交點(diǎn),所以正確,不符合題意;
當(dāng)時(shí),兩交點(diǎn)分別是(1,3),(3,1),到原點(diǎn)的距離都是,所以正確,不符合題意;
當(dāng) 時(shí),在軸的左側(cè),在軸的右側(cè),所以正確,不符合題意;
兩交點(diǎn)分別是),兩交點(diǎn)的距離是 ,當(dāng)無限大時(shí),兩交點(diǎn)的距離趨近于2,所以不正確,符合題意,
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O中,弦AC、BD交于E,.
(1)求證:;
(2)延長EB到F,使EF=CF,試判斷CF與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在噴水池的中心處豎直安裝一根水管,水管的頂端安有一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高點(diǎn),高度為3m,水柱落地點(diǎn)離池中心處3m,以水平方向?yàn)?/span>軸,建立平面直角坐標(biāo)系,若選取點(diǎn)為坐標(biāo)原點(diǎn)時(shí)的拋物線的表達(dá)式為,則選取點(diǎn)為坐標(biāo)原點(diǎn)時(shí)的拋物線表達(dá)式為______,其中自變量的取值范圍是______,水管的長為______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)和.
求一次函數(shù)和反比例函數(shù)的表達(dá)式;
請直接寫出時(shí),x的取值范圍;
過點(diǎn)B作軸,于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,為的切線,為弦,連接,,交于點(diǎn),交于點(diǎn),連接,,且.
(1)求證:為的切線;
(2)若,求證:;
(3)在(2)的條件下,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O1和⊙O2相交于A、B兩點(diǎn), ⊙O1經(jīng)過點(diǎn)O2,點(diǎn)C在上運(yùn)動(dòng)(點(diǎn)C 不與A、B重合),AC的延長線交⊙O2于P,連結(jié)AB、BC、BP;
(1)按題意將圖形補(bǔ)充完整;
(2)當(dāng)點(diǎn)C在上運(yùn)動(dòng)時(shí),圖中不變的角有 (將符合要求的角都寫上)
(3)線段BC、PC的長度存在何種關(guān)系?寫出結(jié)論,并加以證明;
(4)設(shè)⊙O1和⊙O2的半徑為、,當(dāng),滿足什么條件時(shí),為等腰直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】駱駝被稱為“沙漠之舟”,它的體溫隨時(shí)間的變化而發(fā)生較大變化,其體溫()與時(shí)間(小時(shí))之間的關(guān)系如圖1所示.
小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).
A.駱駝在時(shí)刻的體溫與0時(shí)體溫的絕對差(即差的絕對值)
B.駱駝從0時(shí)到時(shí)刻之間的最高體溫與當(dāng)日最低體溫的差
C.駱駝在時(shí)刻的體溫與當(dāng)日平均體溫的絕對差
D.駱駝從0時(shí)到時(shí)刻之間的體溫最大值與最小值的差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張卡片,除一面分別寫有數(shù)字2,2,3,6外,其余均相同,將卡片洗勻后,寫有數(shù)字的一面朝下扣在桌面上,隨機(jī)抽取一張卡片記下數(shù)字后放回,洗勻后仍將寫有數(shù)字的一面朝下扣在桌面上,再抽取一張.
(1)用列表或畫樹狀圖的方法求兩次都恰好抽到2的概率;
(2)小貝和小晶以此為游戲,游戲規(guī)則是:第一次抽取的數(shù)字作為十位,第二次抽取的數(shù)字作為個(gè)位,組成一個(gè)兩位數(shù),若組成的兩位數(shù)不小于32,小貝獲勝,否則小晶獲勝.你認(rèn)為這個(gè)游戲公平嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com