(2012•珠海)如圖,水渠邊有一棵大木瓜樹,樹干DO(不計粗細(xì))上有兩個木瓜A、B(不計大小),樹干垂直于地面,量得AB=2米,在水渠的對面與O處于同一水平面的C處測得木瓜A的仰角為45°、木瓜B的仰角為30°.求C處到樹干DO的距離CO.(結(jié)果精確到1米)(參考數(shù)據(jù):
3
≈1.73,
2
≈1.41
分析:設(shè)OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故OB=OC•tan30°=
3
3
x,再根據(jù)AB=OA-OB=2即可得出結(jié)論.
解答:解:設(shè)OC=x,
在Rt△AOC中,
∵∠ACO=45°,
∴OA=OC=x,
在Rt△BOC中,
∵∠BCO=30°,
∴OB=OC•tan30°=
3
3
x,
∵AB=OA-OB=x-
3
3
x=2,解得x=3+
3
≈3+1.73=4.73≈5米,
∴OC=5米.
答:C處到樹干DO的距離CO約為5米.
點(diǎn)評:本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,先設(shè)出OC的長,利用銳角三角函數(shù)的定義及直角三角形的性質(zhì)用x表示出OA、OB的長是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•珠海)如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•珠海)如圖,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分線.
(1)用尺規(guī)作圖方法,作∠ADC的平分線DN;(保留作圖痕跡,不寫作法和證明)
(2)設(shè)DN與AM交于點(diǎn)F,判斷△ADF的形狀.(只寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•珠海)如圖,把正方形ABCD繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到正方形A′B′CD′(此時,點(diǎn)B′落在對角線AC上,點(diǎn)A′落在CD的延長線上),A′B′交AD于點(diǎn)E,連接AA′、CE.
求證:(1)△ADA′≌△CDE;
(2)直線CE是線段AA′的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•珠海)如圖,在等腰梯形ABCD中,AB∥DC,AB=3
2
,DC=
2
,高CE=2
2
,對角線AC、BD交于H,平行于線段BD的兩條直線MN、RQ同時從點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速平移,分別交等腰梯形ABCD的邊于M、N和R、Q,分別交對角線AC于F、G;當(dāng)直線RQ到達(dá)點(diǎn)C時,兩直線同時停止移動.記等腰梯形ABCD被直線MN掃過的圖形面積為S1、被直線RQ掃過的圖形面積為S2,若直線MN平移的速度為1單位/秒,直線RQ平移的速度為2單位/秒,設(shè)兩直線移動的時間為x秒.
(1)填空:∠AHB=
90°
90°
;AC=
4
4

(2)若S2=3S1,求x;
(3)設(shè)S2=mS1,求m的變化范圍.

查看答案和解析>>

同步練習(xí)冊答案