【題目】如圖,矩形在平面直角坐標(biāo)系中, ,,把矩形沿直線對(duì)折使點(diǎn)落在點(diǎn),直線的交點(diǎn)分別為,點(diǎn)軸上,點(diǎn)在坐標(biāo)平面內(nèi),若四邊形是菱形,則菱形的面積是(

A. B. C. D.

【答案】C

【解析】

如圖,連接AD,根據(jù)勾股定理先求出OC的長(zhǎng),然后根據(jù)折疊的性質(zhì)以及勾股定理求出AD、DF的長(zhǎng),繼而作出符合題意的菱形,分別求出菱形的兩條對(duì)角線長(zhǎng),然后根據(jù)菱形的面積等于對(duì)角線積的一半進(jìn)行求解即可.

如圖,連接AD,

∵∠AOC=90°AC=5,AO=3,

CO==4

∵把矩形沿直線對(duì)折使點(diǎn)落在點(diǎn)處,

∴∠AFD=90°AD=CD,CF=AF=

設(shè)AD=CD=m,則OD=4-m,

RtAOD中,AD2=AO2+OD2,

m2=32+(4-m)2,

∴m=,

AD=

DF===,

如圖,過(guò)點(diǎn)FFHOC,垂足為H,延長(zhǎng)FH至點(diǎn)N,使HN=HF,在HC上截取HM=HD,則四邊形MFDN即為符合條件的菱形,

由題意可知FH=

FN=2FH=3,DH=,

DM=2DH=,

S菱形MFDN=,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點(diǎn)E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.

圖1 圖2 圖3

(1)思路梳理

將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關(guān)系為 ;

(2)類比引申

如圖2,在圖1的條件下,若點(diǎn)E,F(xiàn)由原來(lái)的位置分別變到四邊形ABCD的邊CB,DC的延長(zhǎng)線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.

(3)聯(lián)想拓展

如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的發(fā)展,某快遞公司為了提高分揀包裹的速度,使用機(jī)器人代替人工進(jìn)行包裹分揀,若甲機(jī)器人工作,乙機(jī)器人工作,一共可以分揀700件包裹;若甲機(jī)器人工作,乙機(jī)器人工作,一共可以分揀650件包裹.

1)求甲、乙兩機(jī)器人每小時(shí)各分揀多少件包裹;

2)去年雙十一期間,快遞公司的業(yè)務(wù)量猛增,為了讓甲、乙兩機(jī)器人每天分揀包裹的總數(shù)量不低于2250件,則它們每天至少要一起工作多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形與矩形如圖放置,點(diǎn)共線,共線,連接,取的中點(diǎn),連接,若,,則

A. B. C. 2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將下面的證明過(guò)程補(bǔ)充完整,括號(hào)內(nèi)寫上相應(yīng)理由或依據(jù):已知,如圖,,,垂足分別為D、F,請(qǐng)?jiān)囌f(shuō)明.

證明:∵(已知)

(____________________________)

________(____________________________)

________(____________________________)

又∵(已知)

________(____________________________)

________(____________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,OA=3OC=4,點(diǎn)By軸上一動(dòng)點(diǎn),以AC為對(duì)角線作平行四邊形ABCD.

1)求直線AC的函數(shù)解析式;

2)設(shè)點(diǎn),記平行四邊形ABCD的面積為,請(qǐng)寫出的函數(shù)關(guān)系式,并求當(dāng)BD取得最小值時(shí),函數(shù)的值;

3)當(dāng)點(diǎn)By軸上運(yùn)動(dòng),能否使得平行四邊形ABCD是菱形?若能,求出點(diǎn)B的坐標(biāo);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為節(jié)約用水,某市規(guī)定三口之家每月標(biāo)準(zhǔn)用水量為立方米,超過(guò)部分加價(jià)收費(fèi),假設(shè)不超過(guò)部分水費(fèi)為/立方米,超過(guò)部分水費(fèi)為/立方米.

請(qǐng)用代數(shù)式分別表示這家按標(biāo)準(zhǔn)用水和超出標(biāo)準(zhǔn)用水各應(yīng)繳納的水費(fèi);

如果這家某月用水立方米,那么該月應(yīng)交多少水費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】E、F、M、N分別是正方形ABCD四條邊上的點(diǎn),AEBFCMDN,四邊形EFMN是什么圖形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是一個(gè)正方體的表面展開(kāi)圖,請(qǐng)回答下列問(wèn)題:

1)與面B、面C相對(duì)的面分別是      

2)若Aa3+a2b+3B=﹣a2b+a3,Ca31D=﹣a2b+15),且相對(duì)兩個(gè)面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案