【題目】如圖,當太陽在A處時,小明測得某樹的影長為2米,當太陽在B處時又測得該樹的影長為8米.若兩次日照的光線互相垂直,則這棵樹的高度為米.
【答案】4
【解析】解:如圖,∵兩次日照的光線互相垂直,
∴∠E+∠F=90°,∠E+∠ECD=90°,
∴∠ECD=∠F,
又∵∠CDE=∠FDC=90°,
∴△CDE∽△FDC,
∴ = ,
由題意得,DE=2,DF=8,
∴ = ,
解得CD=4,
即這顆樹的高度為4米.
所以答案是:4.
【考點精析】關于本題考查的相似三角形的應用和平行投影,需要了解測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解;太陽光線可以看成是平行光線,平行光線所形成的投影稱為平行投影;作物體的平行投影:由于平行投影的光線是平行的,而物體的頂端與影子的頂端確定的直線就是光線,故根據另一物體的頂端可作出其影子才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】西安市在創(chuàng)建文明城區(qū)的活動中,有兩個長度相等的彩色磚道鋪設任務,分別交給甲、乙兩個施工隊同時進行施工,如圖是反映所鋪設的彩色磚道的長度y(米)與施工時間x(小時)之間關系的部分圖象,請解答下列問題:
(1)求乙隊在0≤x≤6的時段內y與x的函數關系式.
(2)如果甲隊施工速度不變,乙隊在施工6小時后,施工速度增加到12米/小時,結果兩隊同時完成了任務,求甲隊從開始施工到完成所鋪設的彩色磚道的長度為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。
(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分ABC,P是BD上一點,過點P作PM^AD,PN^CD,垂足分別為M、N。
(1)求證:ADB=CDB;
(2)若ADC=90°,求證:四邊形MPND是正方形。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知第一象限內的點A在反比例函數y= 的圖象上,第二象限內的點B在反比例函數y= 的圖象上,且OA⊥OB,cosA= ,則k的值為( )
A.﹣3
B.﹣4
C.﹣
D.﹣2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三角形紙片△ABC,AB=8,BC=6,AC=5,沿過點B的直線折疊這個三角形,折痕為BD(點D在線段AC上且不與A、C重合).若點C落在AB邊下方的點E處,則△ADE的周長p的取值范圍是( )
A. 7<p<10 B. 5<p<10 C. 5<p<7 D. 7<p<19
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.
(1)如圖,若α=21°,∠ABC=32°,且AP交BC于點P,試探究線段AB、AC與PB之間的數量關系,并對你的結論加以證明;
(2)如圖,若∠ABC=60°-α,點P在△ABC的內部,且使∠CBP=30°,直接寫出∠APC的度數________(用含α的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com