【題目】已知AM是⊙O直徑,弦BCAM,垂足為點(diǎn)N,弦CDAM于點(diǎn)E,連按ABBE

1)如圖1,若CDAB,垂足為點(diǎn)F,求證:∠BED2BAM;

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN;

3)如圖3ABCD,BECD47AE11,求EM的長(zhǎng).

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(33

【解析】

1)根據(jù)垂徑定理可得BNCN,根據(jù)垂直平分線(xiàn)的性質(zhì)可得EBEC,從而可得∠BED2BCD,只需證明∠BAM=∠BCD即可;

2)連接AC,如圖2,易得BC2CN,要證AE2CN,只需證AEBC,只需證ABE≌△CDB,只需證BEBD即可;

3)過(guò)點(diǎn)OOPABP,作OHBEH,作OQCDQ,連接OC,如圖3,由ABCD可推出OPOQ,易證∠BEA=∠CEA,根據(jù)角平分線(xiàn)的性質(zhì)可得OHOQ,即可得到OPOH,則有,從而可得AE11可求出AO、EO,就可求出AM、EM

解:(1)∵BCAM,CDAB,

∴∠ENC=∠EFA90°

∵∠AEF=∠CEN

∴∠BAM=∠BCD

AM是⊙O直徑,弦BCAM

BNCN,

EBEC,

∴∠EBC=∠BCD,

∴∠BED2BCD2BAM

2)連接AC,如圖2,

AM是⊙O直徑,弦BCAM

=

∴∠BAM=∠CAM,

∴∠BDC=∠BAC2BAM=∠BED,

BDBE

ABECDB中,

∴△ABE≌△CDB

AECB

BNCN,

AECB2CN;

3)過(guò)點(diǎn)OOPABP,作OHBEH,作OQCDQ,連接OC,如圖3,

則有

ABCD

APCQ,

AM垂直平分BC

EBEC

∴∠BEA=∠CEA

OHBE,OQCD

OHOQ,

OPOQOH,

又∵

設(shè)AO7k,則EO4k

AEAO+EO11k11,

k1,

AO7EO4,

AM2AO14

EMAMAE14113

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40,經(jīng)市場(chǎng)調(diào)查整理出如下信息

該產(chǎn)品90天售量(n)與時(shí)間(x)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表

時(shí)間(第x天)

1

2

3

10

日銷(xiāo)售量(n件)

198

196

194

?

②該產(chǎn)品90天內(nèi)每天的銷(xiāo)售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:

時(shí)間(第x天)

1≤x50

50≤x≤90

銷(xiāo)售價(jià)格(元/件)

x+60

100

(1)求出第10天日銷(xiāo)售量;

(2)設(shè)銷(xiāo)售該產(chǎn)品每天利潤(rùn)為y,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?(提示每天銷(xiāo)售利潤(rùn)=日銷(xiāo)售量×每件銷(xiāo)售價(jià)格每件成本)

(3)在該產(chǎn)品銷(xiāo)售的過(guò)程中,共有多少天銷(xiāo)售利潤(rùn)不低于5400,請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑的圓恰好與CD相切于點(diǎn)C,交AD于點(diǎn)E,交BA的延長(zhǎng)線(xiàn)于點(diǎn)F,若弧EF的長(zhǎng)為π,則圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABO中,∠BAO90°AOABBO8,點(diǎn)A的坐標(biāo)(﹣8,0),點(diǎn)C在線(xiàn)段AO上以每秒2個(gè)單位長(zhǎng)度的速度由AO運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接BC,過(guò)點(diǎn)AADBC,垂足為點(diǎn)E,分別交BO于點(diǎn)F,交y軸于點(diǎn) D

1)用t表示點(diǎn)D的坐標(biāo)   ;

2)如圖1,連接CF,當(dāng)t2時(shí),求證:∠FCO=∠BCA;

3)如圖2,當(dāng)BC平分∠ABO時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=8cm,AC=6cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CB方向以3cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以2cm/s的速度向點(diǎn)A運(yùn)動(dòng),將△APQ沿直線(xiàn)AB翻折得△APQ,若四邊形APQP′為菱形,則運(yùn)動(dòng)時(shí)間為( 。

A. 1sB. sC. sD. s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線(xiàn)上.

(1)求坡底C點(diǎn)到大樓距離AC的值;

(2)求斜坡CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C坐標(biāo)為(1,0),點(diǎn)A的坐標(biāo)為(0,2).一次函數(shù)ykx+b的圖象經(jīng)過(guò)點(diǎn)B,C,反比例函數(shù)y的圖象也經(jīng)過(guò)點(diǎn)B

(1)求反比例函數(shù)的關(guān)系式;

(2)直接寫(xiě)出當(dāng)x0時(shí),kx+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:PA=PB=4,以AB為一邊作正方形ABCD,使PD兩點(diǎn)落在直線(xiàn)AB的兩側(cè).

(1)如圖,當(dāng)∠APB=45°時(shí),求ABPD的長(zhǎng);

(2)當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,的斜邊BCx軸上,直角頂點(diǎn)Ay軸的正半軸上,,.

(1)求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式和對(duì)稱(chēng)軸;

(2)設(shè)點(diǎn)是拋物線(xiàn)在第一象限部分上的點(diǎn),的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo);

(3)在拋物線(xiàn)對(duì)稱(chēng)軸上,是否存在這樣的點(diǎn)M,使得為等腰三角形(P為上述(2)問(wèn)中使S最大時(shí)的點(diǎn))?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(4)設(shè)點(diǎn)M是直線(xiàn)AC上的動(dòng)點(diǎn),試問(wèn):在平面直角坐標(biāo)系中,是否存在位于直線(xiàn)AC下方的點(diǎn)N,使得以點(diǎn)OA、MN為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案