【題目】如圖,點(diǎn)E在CD上,點(diǎn)F在BA上,G是AD延長(zhǎng)線上一點(diǎn).
(1 )若∠A=∠1,則可判斷_______∥_______,因?yàn)?/span>________.
(2 )若∠1=∠_________,則可判斷AG∥BC,因?yàn)?/span>_________.
(3 )若∠2+∠______=180°,則可判斷CD∥AB,因?yàn)?/span>______
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程2x2﹣kx﹣1=0的根的情況是( )
A.方程有兩個(gè)相等的實(shí)數(shù)根
B.方程有兩個(gè)不相等的實(shí)數(shù)根
C.方程沒有實(shí)數(shù)根
D.方程的根的情況與k的取值有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式能用平方差公式分解因式的有( )
①x2+y2;②x2-y2;③-x2-y2;④-x2+y2;⑤-x2+2xy-y2.
A. 1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將7張長(zhǎng)為a,寬為b(a>b)的小長(zhǎng)方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a=b
B.a=3b
C.a=2b
D.a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A. x3+x2=x5B. x4+x4=2x4C. x3+x3=2x6D. x4+x4=x8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果數(shù)軸上的點(diǎn)A對(duì)應(yīng)的數(shù)為-1,那么數(shù)軸上與點(diǎn)A相距3個(gè)單位長(zhǎng)度的點(diǎn)所對(duì)應(yīng)的有理數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點(diǎn),連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點(diǎn),連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由邊長(zhǎng)為1cm的若干個(gè)正方形疊加行成的圖形,其中第一個(gè)圖形由1個(gè)正方形組成,周長(zhǎng)為4cm,第二個(gè)圖形由4個(gè)正方形組成,周長(zhǎng)為10cm.第三個(gè)圖形由9個(gè)正方形組成,周長(zhǎng)為16cm,依次規(guī)律…
(1)第四個(gè)圖形有個(gè)正方形組成,周長(zhǎng)為cm.
(2)第n個(gè)圖形有個(gè)正方形組成,周長(zhǎng)為cm.
(3)若某圖形的周長(zhǎng)為58cm,計(jì)算該圖形由多少個(gè)正方形疊加形成.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com