已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,點P從A點出發(fā),沿AD邊以1的速度向點D運動,點Q從點C開始沿CB邊以3的速度向點B運動,P,Q分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t.
(1)當t為何值時,四邊形PQCD為平行四邊形?
(2)當t為何值時,四邊形PQCD為等腰梯形?
分析:(1)根據(jù)題意可得PA=t,CQ=3t,則PD=AD-PA=24-t,當PD=CQ時,四邊形PQCD為平行四邊形,可得方程24-t=3t,解此方程即可求得答案;
(2)首先過D作DE⊥BC于E,可求得EC的長,又由當PQ=CD時,四邊形PQCD為等腰梯形,可求得當QC-PD=QC-EF=QF+EC=2CE,即3t-(24-t)=4時,四邊形PQCD為等腰梯形,解此方程即可求得答案.
解答:解:(1)根據(jù)題意得:PA=t,CQ=3t,則PD=AD-PA=24-t,
∵AD∥BC,
∴PD∥CQ,
∴當PD=CQ時,四邊形PQCD為平行四邊形,
即24-t=3t,
解得:t=6,
即當t=6時,四邊形PQCD為平行四邊形;
(2)過D作DE⊥BC于E,
則四邊形ABED為矩形,
∴BE=AD=24cm,
∴EC=BC-BE=2cm,
當PQ=CD時,四邊形PQCD為等腰梯形,如圖所示:
過點P作PF⊥BC于點F,過點D作DE⊥BC于點E,
則四邊形PDEF是矩形,
∴EF=PD,PF=DE,
在Rt△PQF和Rt△CDE中,
PF=DE
PQ=DC
,
∴Rt△PQF≌Rt△CDE(HL),
∴QF=CE,
∴QC-PD=QC-EF=QF+EC=2CE,
即3t-(24-t)=4,
解得:t=7,
即當t=7時,四邊形PQCD為等腰梯形.
點評:此題考查了直角梯形的性質、平行四邊形的判定、等腰梯形的判定以及全等三角形的判定與性質.此題難度適中,注意掌握數(shù)形結合思想與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點P在BC上移動,則當PA+PD取最小值時,△A精英家教網(wǎng)PD中邊AP上的高為( 。
A、
2
17
17
B、
4
17
17
C、
8
17
17
D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點P在BC上移動,則PA+PD的最小值為
2
17
2
17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•遼陽)已知直角梯形ABCD,AB∥CD,∠C=90°,AB=BC=
12
CD,E為CD的中點.
(1)如圖(1)當點M在線段DE上時,以AM為腰作等腰直角三角形AMN,判斷NE與MB的位置關系和數(shù)量關系,請直接寫出你的結論;
(2)如圖(2)當點M在線段EC上時,其他條件不變,(1)中的結論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直角梯形ABCD如圖放置在平面直角坐標系中,∠DCB=30°,AB邊在y軸上,點D的橫坐標為6,CQ⊥x軸,垂足為Q,點Q的橫坐標為12,過CD的直線l交x軸于點E,E點坐標為(18,0).
(1)求直線l的解析式,以及點A和點B的坐標;
(2)P為線段CD上一動點,連結PQ、OP,探究△POQ的周長,并求出當周長最小時,P的坐標及此時的該三角形的周長;
(3)點N從點Q(12,0)出發(fā),沿著x軸以每秒1個單位長度的速度向點O運動,同時另一動點M從點B開始沿B-C-D-A的方向繞梯形ABCD運動,運動速度為每秒為2個單位長度,當其中一個點到達終點時,另一點也停止運動,設運動時間為t秒,連結MO和MN,試探究當t為何值時MO=MN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,點P從A點出發(fā),沿AD邊以1的速度向點D運動,點Q從點C開始沿CB邊以3的速度向點B運動,P、Q分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t.
(1)當t為何值時,四邊形PQCD為平行四邊形?
(2)當t為何值時,四邊形PQCD為等腰梯形?

查看答案和解析>>

同步練習冊答案