【題目】已知,如圖,BD是∠ABC的平分線,ABBC,點(diǎn)PBD上,PMADPNCD,垂足分別是MN

1)求證:PMPN;

2)聯(lián)結(jié)MN,求證:PDMN的垂直平分線.

【答案】1)見(jiàn)解析 (2)見(jiàn)解析

【解析】

1)根據(jù)角平分線的定義可得∠ABD=∠CBD,然后利用“邊角邊”證明△ABD和△CBD全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADB=∠CDB,然后根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等證明即可得到答案;

2)利用“HL”證明RtPDMRtPDN,根據(jù)全等三角形對(duì)應(yīng)邊相等可得DMDN,然后根據(jù)線段的垂直平分線性質(zhì)定理的逆定理即可得到結(jié)論;

解:(1) BD為∠ABC的平分線,

∴∠ABD=∠CBD,

在△ABD和△CBD中,

,

∴△ABD≌△CBDSAS),

∴∠ADB=∠CDB

∵點(diǎn)PBD上,PMAD,PNCD,

PMPN(角平分線上的點(diǎn)到角兩邊的距離相等);

2)在RtPDMRtPDN中,

,

RtPDMRtPDNHL),

DMDN,

DMN的垂直平分線上,

PMPN,

PMN的垂直平分線上,

PDMN的垂直平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為倡導(dǎo)低碳生活,人們現(xiàn)在常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實(shí)物圖,車架檔ACCD的長(zhǎng)分別為45cm,60cm,且它們互相垂直,座桿CE的長(zhǎng)為20cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2.

(1)求車架檔AD的長(zhǎng);

(2)求車座點(diǎn)E到車架檔AB的距離.

(結(jié)果精確到1cm.參考數(shù)據(jù):sin75°≈0.966,cos75°≈0.259,tan75°≈3.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛.設(shè)慢車行駛的時(shí)間xh),兩車之的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系.

1)求慢車和快車的速度;

2)求線段BC所表示的yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)第一列快車出發(fā)后又有一列快車(與第一列快車速度相同)從甲地出發(fā),與慢車同時(shí)到達(dá)各自的目的地.請(qǐng)直接寫出第二列快車出發(fā)后經(jīng)過(guò)多少小時(shí)與慢車相遇,相遇時(shí)他們距甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥CD,垂足為E,若線段AE=10,則S四邊形ABCD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦期間,某商場(chǎng)設(shè)置了如圖所示的幸運(yùn)轉(zhuǎn)盤,轉(zhuǎn)盤分成4個(gè)大小相同的扇形,分別標(biāo)有數(shù)學(xué)1,2,3,4,指針的位置固定,轉(zhuǎn)盤可以自由轉(zhuǎn)動(dòng),當(dāng)轉(zhuǎn)動(dòng)的轉(zhuǎn)盤停止后,其中的某個(gè)扇形會(huì)停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚(gè)扇形的交線時(shí),當(dāng)作右邊的扇形).商場(chǎng)規(guī)定:凡是參加抽獎(jiǎng)的顧客均可轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,如果兩次轉(zhuǎn)動(dòng)中指針指缶扇形上的數(shù)字之和為8是一等獎(jiǎng),數(shù)字之和為7是二等獎(jiǎng),數(shù)字之和為6是三等獎(jiǎng),標(biāo)號(hào)之和為其他數(shù)字則獲得一份紀(jì)念品,請(qǐng)分別求出顧客抽中一、二、三等獎(jiǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),下列結(jié)論正確的是(

A.它的圖象必經(jīng)過(guò)點(diǎn)(-1,1B.它的圖象不經(jīng)過(guò)第三象限

C.當(dāng)時(shí),D.的值隨值的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,ACBDP,EBC上一點(diǎn),AEBDF,若AB=AE,則下列結(jié)論:①AF=AP;②AE=FD;③BE=AF.正確的是______(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)如圖,某大樓的頂部豎有一塊廣告牌CD,小明在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度,AB=10米,AE=15米.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù): ,

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以點(diǎn)O為圓心,OB為半徑作圓,過(guò)點(diǎn)C作CD∥AB交⊙O于點(diǎn)D,連接BD.

(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;

(2)試判斷四邊形BOCD的形狀,并證明你的判斷;

(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.

查看答案和解析>>

同步練習(xí)冊(cè)答案