【題目】ABC中,AB=AC.

(1)如圖1,如果∠BAD=30°,ADBC上的高,AD=AE,則∠EDC=_____度;

(2)如圖2,如果∠BAD=40°,ADBC上的高,AD=AE,則∠EDC=_______度;

(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請用式子表示:____________________.

(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由.

【答案】(1)15;(2)20;(3)EDC=BAD或者∠BAD =2EDC;(4)有,理由見解析.

【解析】

試題(1)等腰三角形三線合一,所以∠DAE=30°,又因為AD=AE,所以∠ADE=AED=75°,所以∠DEC=15°;

(2)同理,易證∠ADE=70°,所以∠DEC=20°;

(3)通過(1)(2)題的結(jié)論可知,∠BAD=2EDC(或∠EDC=BAD).

(4)由于AD=AE,所以∠ADE=AED,根據(jù)已知,易證∠BAD+B=2EDC+C,而B=C,所以∠BAD=2EDC.

試題解析:(1)∵在ABC中,AB=AC,ADBC上的高,

∴∠BAD=CAD,

∵∠BAD=30°,

∴∠BAD=CAD=30°,

AD=AE,

∴∠ADE=AED=75°,

∴∠EDC=15°.

(2)∵在ABC中,AB=AC,ADBC上的高,

∴∠BAD=CAD,

∵∠BAD=40°,

∴∠BAD=CAD=40°,

AD=AE,

∴∠ADE=AED=70°,

∴∠EDC=20°.

(3)BAD=2EDC(或∠EDC=BAD)

(4)仍成立,理由如下

AD=AE,∴∠ADE=AED,

∴∠BAD+B=ADC=ADE+EDC=AED+EDC=(EDC+C)+EDC=2EDC+C

又∵AB=AC,

∴∠B=C

∴∠BAD=2EDC.

故分別填15°,20°,EDC=BAD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,ABAC的垂直平分線的交點D恰好落在BC邊上

(1)判斷ABC的形狀

(2)若點A在線段DC的垂直平分線上,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:

①以B為圓心,任意長為半徑作弧,交AB于D,交BC于E;

②分別以DE為圓心,以大于DE的同樣長為半徑作弧,兩弧交于點F;

③作射線BFACG.

如果BG=CG,∠A=60°,那么∠ACB的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,ADC=60°,AB=BC=1,則下列結(jié)論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答下列應(yīng)用題:

⑴某房間的面積為17.6m2,房間地面恰好由110塊相同的正方形地磚鋪成,每塊地磚的邊長是多少?

⑵已知第一個正方體水箱的棱長是60cm,第二個正方體水箱的體積比第一個水箱的體積的3倍還多81000 cm3,則第二個水箱需要鐵皮多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtBCD中,∠CBD=90°,BC=BD,點ACB的延長線上,且BA=BC,點E在直線BD上移動,過點E作射線EFEA,交CD所在直線于點F.

(1)當(dāng)點E在線段BD上移動時,如圖(1)所示,求證:AE=EF;

(2)當(dāng)點E在直線BD上移動時,如圖(2)、圖(3)所示,線段AEEF又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明的爸爸在魚池邊開了一塊四邊形土地種了一些蔬菜,爸爸讓小明計算這塊土地的面積,以便估算產(chǎn)值,小明測得AB=4m,BC=3m,CD=13m.DA=12m.又已知∠B=90°,每平方米投入資金80元,預(yù)計銷售后產(chǎn)值每平方米480元,試求出這塊土地能產(chǎn)生多少利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲從A出發(fā)向B行走,同時乙從B出發(fā)向A行走,如圖相交于點P的兩條線段里l1、l2分別表示甲、乙距離B的路程ykm)與已用時間xh)之間的關(guān)系.
1)求甲乙行走的速度;
2)求l1、l2的表達(dá)式;
3)計算乙需多長時間到達(dá)A地.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為了答謝顧客,凡在本超市購物的顧客,均可憑購物小票參與抽獎活動,獎品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎規(guī)則如下:①如圖,是一個材質(zhì)均勻可自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎活動的顧客可進(jìn)行兩次“有效隨機(jī)轉(zhuǎn)動”(當(dāng)轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,可獲得指針?biāo)竻^(qū)域的字樣,我們稱這次轉(zhuǎn)動為一次“有效隨機(jī)轉(zhuǎn)動”);③假設(shè)顧客轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動轉(zhuǎn)盤,直到轉(zhuǎn)動為一次“有效隨機(jī)轉(zhuǎn)動”;④當(dāng)顧客完成一次抽獎活動后,記下兩次指針?biāo)竻^(qū)域的兩個字,只要這兩個字和獎品名稱的兩個字相同(與字的順序無關(guān)),便可獲得相應(yīng)獎品一瓶;不相同時,不能獲得任何獎品.

根據(jù)以上規(guī)則,回答下列問題:

(1)求一次“有效隨機(jī)轉(zhuǎn)動”可獲得“樂”字的概率;

(2)有一名顧客憑本超市的購物小票,參與了一次抽獎活動,請你用列表或樹狀圖等方法,求該顧客經(jīng)過兩次“有效隨機(jī)轉(zhuǎn)動”后,獲得一瓶可樂的概率.

查看答案和解析>>

同步練習(xí)冊答案